Methodology for Estimating Thermodynamic Parameters and Performance of Alternative Refrigerants
估算替代制冷剂热力学参数和性能的方法
本文通过几个潜在R-114替代制冷剂的例子,演示了实施Reid等人(1987年)和Poling等人(2001年)所述方法的分步程序,以及Brown(2007a,2007b)最近发表的评估替代制冷剂热力学性能潜力的出版物。这种方法使我们能够通过只知道制冷剂的正常沸点温度及其分子结构,快速、轻松地估计几个关键热力学参数,即临界温度、临界压力、临界密度、恒压下的理想气体比热和偏心系数。一旦知道了这些关键参数-
REFPROP 8.0(Lemmon et al.2007)中实施的Robinson状态方程公式可轻松用于预测制冷剂的加热或冷却性能系数以及体积加热或冷却能力。这种方法的威力在于,人们可以轻松、快速地预测大量制冷剂的性能潜力,这些制冷剂没有得到很好的描述,同时也限制了对昂贵且耗时的实验或详细的状态方程建模的需要。然后,一旦这项初步调查完成,人们就可以关注一个缩短的、更有限的潜在替代制冷剂清单。单位:双引文:ASHRAE交易,第114卷,pt。
2008年1月1日,纽约
This paper demonstrates, through several examples of potential R-114 replacement refrigerants, the step-by-step procedure to implement the methodology described in, for example, Reid et al. (1987) and Poling et al. (2001)—and illustrated in recent publications by Brown (2007a, 2007b)—for evaluating the thermodynamic performance potentials of alternative refrigerants. This methodology allows one to estimate quickly and easily several key thermodynamic parameters— namely, critical temperature, critical pressure, critical density, ideal gas specific heat at constant pressure, and acentric factor—from knowing only a refrigerant’s normal boiling point temperature and its molecular structure. Once these key parameters are known, the Peng-Robinson equation-of-state formulation implemented in REFPROP 8.0 (Lemmon et al. 2007) easily can be used to predict a refrigerant’s heating or cooling coefficient of performance and volumetric heating or cooling capacity. The power of this methodology is that one can predict easily and quickly the performance potentials of a large number of refrigerants that are not-so-well-described, as well as ones that are, limiting the need for expensive and timeconsuming experimentation or detailed equation-of-state modeling. Then, once this preliminary investigation is complete, one could focus on a shortened, much more limited list of potential replacement refrigerants.Units: Dual