首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D5810-96(2021)
到馆提醒
收藏跟踪
购买正版
Standard Guide for Spiking into Aqueous Samples  加入含水样品的标准指南 
发布日期: 2021-07-01
1.1 本指南涵盖了将多种材料“添加”到水介质中的一般技术。本指南将有助于分析员为质量控制目的制备加标样品。还提供了指导,以帮助分析员计算回收率和解释结果。分析员有责任确定此处描述的程序和材料是否适合手头的任务。 1.2 本指南中的程序侧重于“基质加标”的制备、分析和结果解释。 这些程序偶然适用于通过加标制备校准标准、校准检查标准、实验室控制标准、标准物质和其他质量控制材料。出于各种分析和质量控制目的,使用感兴趣的分析物对样品(基质)进行强化(添加)。虽然讨论了多个样品部分的加标,但不包括标准添加方法。 1.3 本指南旨在与提供相关分析物或成分分析程序的单独分析试验方法结合使用。 该测试方法用于确定分析物或成分的背景水平,并在加标后再次确定其现在升高的水平。每种试验方法通常不仅提供样品程序,还提供校准标准或分析控制溶液或两者的程序。这些程序包括准备、处理、储存、保存和分析技术。使用分析员在个案基础上的判断,这些程序可扩展适用于加标溶液,本指南中不再重复。 另请参见练习 E200 准备和储存信息。 1.4 这些程序仅适用于以加标物和任何背景物质的浓度溶于水的分析物,或溶于自身水溶性溶剂的分析物。在后一种情况下使用的系统必须产生分析物和样品的均匀溶液。如果无法获得样品中相关分析物的水溶液或均匀悬浮液,则无法获得有意义的回收数据。如果可以在整个分析过程中(例如通过机械搅拌或搅拌)充分保持悬浮液的均匀性,则这些程序可能适用于微生物制剂。 1.5 基质加标可在现场或实验室进行,具体取决于分析过程的哪一部分要进行测试。现场加标测试整个过程的恢复,包括样品的保存和运输。实验室加标仅测试实验室过程。样品提取物、浓缩物或稀释液的加标将仅测试加标后的过程部分。 1.6 以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。 1.7 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 基质加标通常用于确定特定分析条件下的偏差,或通过确定在这些条件下从样品基质中回收加标分析物或成分的程度,确定测试方法在该情况下对特定样品基质的适用性。分析物或相关组分与样品基质的反应或相互作用可能对回收率产生显著的积极或消极影响,并可能使所选的分析或监测过程对该样品基质无效。 5.2 作为常规质量保证计划的一部分,矩阵加标也可用于监测实验室、单个仪器或分析员的性能。随着时间的推移,相同或类似基质的加标回收率或回收限的变化可能表明分析结果质量的变化。 5.3 加标可用于比较试剂水样和天然基质样品(有加标和无加标测量)中类似加标的回收率,以区分( 1. )异常干扰和( 2. )固有方法恢复和不稳定性影响。本指南不试图处理不同基质中峰回收率差异的统计显著性。 5.4 当非实验室人员在现场进行加标时,应遵守特殊预防措施。建议所有加标制备工作由经验丰富的分析员在实验室进行,以便现场操作仅包括向样品基质中添加制备的加标溶液。有必要对现场人员进行培训并验证其加标技术,以确保准确且重复地添加加标。 重复场峰值可用于记录技术的再现性。当使用环境不稳定的化合物作为加标剂时,应通过适当的方式保护加标溶液直至使用点,如冷却、防晒、防氧或化学保存。 注1: 如果实验室已知任何现场加标样品,则应在最终结果报告中标记为现场加标。此外,只要可能,应避免挥发性化合物的现场尖峰。 5.5 通常默认从样品中回收分析物成分的程度与从加标样品中回收相同分析物的加标程度大致相同。该假设可能不正确的一个原因是,峰可能不会以与天然存在的分析物在样品中结合相同的方式在样品中结合(例如,与悬浮物结合)。因此,可以从不同于分析物背景水平的样品中回收峰。由于这个原因,使用峰值恢复校正分析数据是不好的做法,而且偏差校正会增加可变性。 然而,峰值恢复信息应与相关样本分析结果一起报告。 5.6 本指南也适用于通过标准添加方法进行量化的尖峰的使用,以及替代品和内标的添加。
1.1 This guide covers the general technique of “spiking” a broad range of materials into aqueous media. This guide will serve the analyst in preparing spiked samples for quality control purposes. Guidance is also provided to aid the analyst in calculating recoveries and interpreting results. It is the responsibility of the analyst to determine whether the procedures and materials described here are appropriate to the task at hand. 1.2 The procedures in this guide are focused on “matrix spike” preparation, analysis, and interpretation of results. The applicability of these procedures to the preparation of calibration standards, calibration check standards, laboratory control standards, reference materials, and other quality control materials by spiking is incidental. A sample (the matrix) is fortified (spiked) with the analyte of interest for a variety of analytical and quality control purposes. While the spiking of multiple sample portions is discussed, the method of standard additions is not covered. 1.3 This guide is intended for use in conjunction with the individual analytical test method that provides procedures for analysis of the analyte or component of interest. The test method is used to determine an analyte or component’s background level and, again after spiking, its now elevated level. Each test method typically provides procedures not only for samples, but also for calibration standards or analytical control solutions, or both. These procedures include preparation, handling, storage, preservation, and analysis techniques. These procedures are applicable by extension, using the analyst’s judgement on a case-by-case basis, to spiking solutions, and are not reiterated in this guide. See also Practice E200 for preparation and storage information. 1.4 These procedures apply only to analytes that are soluble in water at the concentration of the spike plus any background material, or to analytes soluble in a solvent that is itself water-soluble. The system used in the later case must result in a homogeneous solution of analyte and sample. Meaningful recovery data cannot be obtained if an aqueous solution or homogenous suspension of the analyte of interest in the sample cannot be attained. These procedures may be applicable to microbiological preparations if the homogeneity of the suspension can be adequately maintained throughout the course of the analysis, for example, by mechanical agitation or stirring. 1.5 Matrix spiking may be performed in the field or in the laboratory, depending on which part of the analytical process is to be tested. Field spiking tests the recovery of the overall process, including preservation and shipping of the sample. Laboratory spiking tests the laboratory process only. Spiking of sample extracts, concentrates, or dilutions will test only that portion of the process subsequent to addition of the spike. 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Matrix spiking is commonly used to determine the bias under specific analytical conditions, or the applicability of a test method to a particular sample matrix in that context, by determining the extent to which the spiked analyte or component is recovered from the sample matrix under these conditions. Reactions or interactions of the analyte or component of interest with the sample matrix may cause a significant positive or negative effect on recovery and may render the chosen analytical, or monitoring, process ineffectual for that sample matrix. 5.2 Matrix spiking can also be used to monitor the performance of a laboratory, individual instrument, or analyst as part of a regular quality assurance program. Changes in spike recoveries or recovery limits from the same or similar matrices over time may indicate variations in the quality of analytical results. 5.3 Spiking can be used to compare the recoveries of like spikes from reagent water samples and natural matrix samples (measured with and without spike) to distinguish between ( 1 ) unusual interference and ( 2 ) inherent method recovery and instability effects. This guide does not attempt to deal with the statistical significance of differences in spike recoveries from different matrices. 5.4 Special precautions shall be observed when nonlaboratory personnel perform spiking in the field. It is recommended that all spike preparation work be performed in a laboratory by experienced analysts so that the field operation consists solely of adding a prepared spiking solution to the sample matrix. Training of field personnel and validation of their spiking techniques are necessary to ensure that spikes are added accurately and reproducibly. Duplicate field spikes can be used to document the reproducibility of the technique. When environmentally labile compounds are used as spikes, the spiking solution shall be protected up to the point of use by appropriate means such as chilling, protection from sunlight and oxygen, or chemical preservation. Note 1: Any field spiked sample, if known to the laboratory, should be labeled as a field spike in the final results report. Also, whenever possible, field spiking of volatile compounds should be avoided. 5.5 It is often tacitly assumed that an analyte component is recovered from samples to approximately the same extent that a spike of the same analyte is recovered from a spiked sample. One reason that this assumption may be incorrect is that the spike may not be bound up in the sample (for example, with suspended matter) in the same way that the naturally occurring analyte is bound in the sample. The spike may therefore be recovered from the sample differently than the background level of the analyte. It is not good practice to correct analytical data using spike recoveries for this reason, as well as the fact that bias corrections can add variability. However, spike recovery information should be reported along with related sample analysis results. 5.6 This guide is also applicable to the use of spikes for quantification by the method of standard additions and to the addition of surrogates and internal standards.
分类信息
关联关系
研制信息
归口单位: D19.02
相似标准/计划/法规
现行
ASTM D5788-95(2024)
Standard Guide for Spiking Organics into Aqueous Samples
向水样品中加入有机物的标准指南
2024-04-01
现行
ASTM E1192-23
Standard Guide for Conducting Acute Toxicity Tests on Aqueous Ambient Samples and Effluents with Fishes, Macroinvertebrates, and Amphibians
用鱼、大型无脊椎动物和两栖动物对水环境样品和流出物进行急性毒性试验的标准指南
2023-01-01
现行
ASTM D6666-20
Standard Guide for Evaluation of Aqueous Polymer Quenchants
水性聚合物淬火剂评价标准指南
2020-05-01
现行
ASTM D6146-97(2018)
Standard Guide for Monitoring Aqueous Nutrients in Watersheds
流域水体营养监测标准指南
2018-08-01
现行
ASTM D1172-15(2024)
Standard Guide for pH of Aqueous Solutions of Soaps and Detergents
肥皂和洗涤剂水溶液pH值的标准指南
2024-01-01
现行
ASTM D8294-21
Standard Practice for Estimating pH to Verify Status of Aqueous Samples
估计pH值以验证含水样品状态的标准实施规程
2021-10-01
现行
ASTM E1402-13(2023)
Standard Guide for Sampling Design
抽样设计标准指南
2023-11-01
现行
ASTM D4211-21
Standard Guide for Fish Sampling
鱼类取样的标准指南
2021-09-01
现行
ASTM D6009-19
Standard Guide for Sampling Waste Piles
废物堆取样的标准指南
2019-09-01
现行
ASTM E105-21
Standard Guide for Probability Sampling of Materials
材料概率抽样的标准指南
2021-06-01
现行
ASTM D7572-15(2022)
Standard Guide for Recovery of Aqueous Cyanides by Extraction from Mine Rock and Soil
从矿山岩石和土壤中萃取回收含水氰化物的标准指南
2022-05-01
现行
ASTM D6089-19(2023)
Standard Guide for Documenting a Groundwater Sampling Event
记录地下水取样事件的标准指南
2023-11-01
现行
ASTM E3177-24
Standard Guide on Sampling for Process Analytical Technology
过程分析技术取样的标准指南
2024-06-01
现行
ASTM D6538-12(2024)
Standard Guide for Sampling Wastewater with Automatic Samplers
用自动取样器取样废水的标准指南
2024-10-01
现行
ASTM D4687-14(2022)
Standard Guide for General Planning of Waste Sampling
废物取样总体规划的标准指南
2022-05-01
现行
ASTM D1978-91(2024)
Standard Guide for Analysis of Electrocoat Bath Samples
电泳槽样品分析的标准指南
2024-07-01
现行
ASTM D6564/D6564M-17(2024)
Standard Guide for Field Filtration of Groundwater Samples
地下水样品现场过滤的标准指南
2024-02-01
现行
ASTM D5956-21
Standard Guide for Sampling Strategies for Heterogeneous Wastes
非均质废物取样策略的标准指南
2021-10-01
现行
ASTM D4447-21
Standard Guide for Disposal of Laboratory Chemicals and Samples
实验室化学品和样品处置标准指南
2021-02-01
现行
ASTM D4411-03(2019)
Standard Guide for Sampling Fluvial Sediment in Motion
运动中采样流体沉积物的标准指南
2019-11-01