Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method
通过真空衰减法对包装中的泄漏进行非破坏性检测的标准测试方法
发布日期:
2009-01-01
1.1
测试包
—
可通过本试验方法进行无损评估的包装包括:
1.1.1刚性和半刚性无盖托盘。
1.1.2用多孔阻隔盖材料密封的托盘或杯子。
1.1.3刚性、无孔包装。
1.1.4灵活、无孔包装。
1.2
检测到泄漏
—
该测试方法通过测量包含测试包的封闭真空测试室中的压力升高(真空损失)来检测包泄漏。真空损失是由测试包顶部空间气体泄漏和/或泄漏处或附近测试包液体内容物挥发引起的。测试可能部分或完全被包装堵塞的泄漏时
’
s液体含量,将试验箱排空至低于液体的压力
’
s汽化压力。所有方法都需要一个包含测试包的测试室和一个设计有一个或多个压力传感器的泄漏检测系统。
下面引用的测试方法灵敏度是使用为表1中总结的精度和偏差研究选择的特定产品包装系统确定的。表1还列出了可通过真空衰减测试泄漏的相关产品包装系统的其他示例。
1.2.1
托盘或杯子(无盖)(漏气)
—
托盘/杯壁上的孔洞或裂纹缺陷至少为50
μ
直径为m。无盖托盘在目标真空度下进行测试
–
4.
·
E4 Pa(
–
400 mbar)。
1.2.2
用多孔阻隔盖材料密封的托盘(顶空气体泄漏)
—
托盘/杯壁上的孔洞或裂纹缺陷至少为100
μ
直径为m。密封区域的通道缺陷(使用125
μ
直径(m)可检测到。在连续粘合剂和点阵粘合剂封装系统中都可以检测到严重的密封粘接缺陷。
还可以检测到轻微不完整的点阵式粘合剂粘合缺陷。所有多孔阻隔盖材料包装均在目标真空度下进行测试
–
4.
·
E4 Pa(
–
400 mbar)。多孔盖包装的测试灵敏度约为E-2 Pa
·
m
3.
·
s
-1
使用经校准的体积流量计。
1.2.3
刚性、无孔包装(顶空气体泄漏)
—
孔缺陷至少为5
μ
直径为m。带螺帽的塑料瓶在目标真空度下进行了测试
–
5.
·
E4 Pa(
–
500毫巴)。使用经校准的体积流量计,测试灵敏度约为E-3.4 Pa
·
m
3.
·
s
-1
. 充气玻璃注射器在目标真空度下进行测试
–
7.5
·
E4 Pa(+250 mbar绝对值),再次在大约+1 mbar绝对值的目标真空下。两种测试的灵敏度约为E-4.1 Pa
·
m
3.
·
s
-1
使用经校准的体积流量计。
1.2.4
刚性、无孔包装(液体泄漏)
—
孔缺陷至少为5
μ
直径为m。使用在约+1 mbar绝对目标真空下测试的大量充水玻璃注射器验证了该检测限。
1.2.5
柔性、无孔包装(气体或液体泄漏)
—
此类包装也可通过真空衰减法进行测试。精密度和偏差研究中不包括柔性封装的灵敏度数据,尽管使用真空衰减测试此类封装是众所周知的。
1.3
测试结果
—
测试结果是定性的(接受/拒绝)。通过比较从控制、非泄漏包获得的定量基线真空衰减测量值与使用泄漏包获得的测量值,以及使用校准气体流量计引入模拟泄漏获得的测量值,建立验收标准。
1.4以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。
1.5
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全和健康实践,并确定监管限制的适用性。
表1各种产品包装系统的真空衰变泄漏试验应用总结
包示例
A.
包内容示例
ASTM P
&
B数据表
目标真空度
B
气体泄漏试验
封装应用和精度
&
偏见研究
多孔屏障盖塔盘
C
空的
固体(片剂、胶囊、粉末、设备)
3, 4, 5
–
400毫巴
无盖托盘
C
或杯子
空的
2.
–
400毫巴
塑料螺旋盖瓶
C
固体(片剂、胶囊、粉末)
液体(具有显著的气体顶空体积)
6.
–
500毫巴
玻璃注射器
C
固体(冻干粉)
7, 8
+250毫巴
其他气体泄漏测试包应用
A.
装有固体材料(例如粉末、片剂、胶囊、设备)的带盖(无孔)托盘或杯子
玻璃或塑料瓶用含有固体材料(例如粉末)的弹性瓶塞封闭
玻璃瓶或塑料瓶用弹性瓶盖封闭,含有液体材料,但具有较大的气体顶空体积
含有固体材料(例如粉末、设备)的柔性包装(例如小袋或袋子)
液体泄漏试验(有或没有气体顶空)
封装应用和精度
&
偏见研究
玻璃注射器
C
液体
9, 10
+1毫巴
其他液体泄漏测试包应用
A.
含有液体材料的眼科滴管尖瓶
含有液体材料的玻璃或塑料安瓿
玻璃或塑料瓶,带有含有液体材料的弹性密封件
装有液体材料的有盖(无孔托盘或杯子)
软包装,如装有液体材料的小袋或袋子
A.
列出了与指定泄漏试验方法相关的包装类型示例。这份清单并非包罗万象。
B
目标真空表示为负毫巴读数(例如。,
–
400 mbar)指相对于大气压力测量的试验箱压力(真空)。以正毫巴读数(例如,+1毫巴)表示的目标真空指的是试验箱中的绝对压力读数。
C
用于参考ASTM精度和偏差(P
&
B) 学习。
====意义和用途======
医疗器械、药品和食品包装泄漏可能导致有害气体(最常见的是氧气)、有害微生物或颗粒污染物进入。
包装泄漏可能表现为包装组件本身或配对组件之间的密封接合处存在缺陷。检测泄漏的能力对于确保包装的一致性和完整性是必要的。
初始设置和校准后,单个测试操作可以是半自动、自动或手动。该测试方法允许对无法明显检测到的泄漏进行无损检测。试验方法不要求引入任何外来材料或物质,如染料或气体。然而,重要的是在测试过程中物理屏蔽或阻挡任何包装多孔屏障表面,以防止主要由气体通过多孔表面迁移引起的腔室真空快速损失。泄漏检测仅基于检测测试室内压力变化的能力,该压力变化是由来自真空挑战包装的气体或蒸汽出口引起的。
该试验是优化包装密封参数和比较评估各种包装和材料的有用研究工具。该测试方法也适用于生产环境,因为它是快速、非侵入性和非破坏性的,可用于100%在线测试或对生产操作中的统计抽样进行测试。
超过真空衰减测试允许极限的泄漏测试结果通过声音或视觉信号响应或两者来指示。
1.1
Test Packages
—
Packages that can be nondestructively evaluated by this test method include:
1.1.1 Rigid and semi-rigid non-lidded trays.
1.1.2 Trays or cups sealed with porous barrier lidding material.
1.1.3 Rigid, nonporous packages.
1.1.4 Flexible, nonporous packages.
1.2
Leaks Detected
—
This test method detects package leaks by measuring the rise in pressure (vacuum loss) in an enclosed evacuated test chamber containing the test package. Vacuum loss results from leakage of test package headspace gases and/or volatilization of test package liquid contents located in or near the leak. When testing for leaks that may be partially or completely plugged with the package
’
s liquid contents, the test chamber is evacuated to a pressure below the liquid
’
s vaporization pressure. All methods require a test chamber to contain the test package and a leak detection system designed with one or more pressure transducers. Test method sensitivities cited below were determined using specific product-package systems selected for the precision and bias studies summarized in Table 1. Table 1 also lists other examples of relevant product-package systems that can be tested for leakage by vacuum decay.
1.2.1
Trays or Cups (Non-lidded) (Air Leakage)
—
Hole or crack defects in the wall of the tray/cup of at least 50
μ
m in diameter can be detected. Nonlidded trays were tested at a Target Vacuum of
–
4
·
E4 Pa (
–
400 mbar).
1.2.2
Trays Sealed with Porous Barrier Lidding Material (Headspace Gas Leakage)
—
Hole or crack defects in the wall of the tray/cup of at least 100
μ
m in diameter can be detected. Channel defects in the seal area (made using wires of 125
μ
m in diameter) can be detected. Severe seal bonding defects in both continuous adhesive and dot matrix adhesive package systems can be detected. Slightly incomplete dot matrix adhesive bonding defects can also be detected. All porous barrier lidding material packages were tested at a Target Vacuum of
–
4
·
E4 Pa (
–
400 mbar). The sensitivity of the test for porous lidded packages is approximately E-2 Pa
·
m
3
·
s
-1
using a calibrated volumetric airflow meter.
1.2.3
Rigid, Nonporous Packages (Headspace Gas Leakage)
—
Hole defects of at least 5
μ
m in diameter can be detected. Plastic bottles with screw caps were tested at a target vacuum of
–
5
·
E4 Pa (
–
500 mbar). Using a calibrated volumetric airflow meter, the sensitivity of the test is approximately E-3.4 Pa
·
m
3
·
s
-1
. Air-filled glass syringes were tested at a target vacuum of
–
7.5
·
E4 Pa (+250 mbar absolute) and again at a target vacuum of about +1 mbar absolute. The sensitivity of both tests is approximately E-4.1 Pa
·
m
3
·
s
-1
using a calibrated volumetric airflow meter.
1.2.4
Rigid, Nonporous Packages (Liquid Leakage)
—
Hole defects of at least 5
μ
m in diameter can be detected. This detection limit was verified using a population of water-filled glass syringes tested at a target vacuum of about +1 mbar absolute.
1.2.5
Flexible, Nonporous Packages (Gas or Liquid Leakage)
—
Such packages may also be tested by the vacuum decay method. Sensitivity data for flexible packages were not included in the precision and bias studies, although the use of vacuum decay for testing such packages is well known.
1.3
Test Results
—
Test results are qualitative (Accept/Reject). Acceptance criteria are established by comparing quantitative baseline vacuum decay measurements obtained from control, non-leaking packages to measurements obtained using leaking packages, and to measurements obtained with the introduction of simulated leaks using a calibrated gas flow meter.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
TABLE 1 Summary of Vacuum Decay Leak Tests Applications for Various Product-Packages Systems
Package Examples
A
Package Content Examples
ASTM P
&
B Data Tables
Target Vacuum
B
GAS LEAK TEST
PACKAGE APPLICATIONS AND PRECISION
&
BIAS STUDIES
Porous barrier lidded trays
C
Empty
Solids (tablets, capsules, powders, devices)
3, 4, 5
–
400 mbar
Nonlidded trays
C
or cups
Empty
2
–
400 mbar
Plastic screw capped bottles
C
Solids (tablets, capsules, powders)
Liquids (with significant gas headspace volume)
6
–
500 mbar
Glass syringes
C
Solids (lyophilized powders)
7, 8
+250 mbar
ADDITIONAL GAS LEAK TEST PACKAGE APPLICATIONS
A
Lidded (nonporous) trays or cups containing solid materials (for example, powders, tablets, capsules, devices)
Glass or plastic vials closed with elastomeric closures containing solid materials (for example, powders)
Glass or plastic vials closed with elastomeric closures, containing liquid materials, but with significant gas headspace volume
Flexible packages (for example pouches or bags) containing solid materials (for example, powders, devices)
LIQUID LEAK TEST (with or without gas headspace)
PACKAGE APPLICATIONS AND PRECISION
&
BIAS STUDIES
Glass syringes
C
Liquids
9, 10
+1 mbar
ADDITIONAL LIQUID LEAK TEST PACKAGE APPLICATIONS
A
Ophthalmic dropper tip bottles containing liquid materials
Glass or plastic ampoules containing liquid materials
Glass or plastic vials with elastomeric closures containing liquid materials
Lidded (nonporous trays or cups) containing liquid materials
Flexible packages such as pouches or bags containing liquid materials
A
Examples of package types relevant to the specified leak test method are listed. The list is not intended to be all inclusive.
B
Target vacuum expressed as a negative mbar reading (e.g.,
–
400 mbar) refers to the measured test chamber pressure (vacuum) relative to atmospheric pressure. Target vacuum expressed as a positive mbar reading (e.g., +1 mbar) refers to the absolute pressure reading in the test chamber.
C
Packages used for the referenced ASTM Precision and Bias (P
&
B) studies.
====== Significance And Use ======
Leaks in medical device, pharmaceutical, and food packages may result in the ingress of unwanted gases (most commonly oxygen), harmful microbiological, or particulate contaminants. Package leaks may appear as imperfections in the package components themselves or at the seal juncture between mated components. The ability to detect leaks is necessary to ensure consistency and integrity of packages.
After initial set-up and calibration, individual test operation may be semi-automatic, automatic, or manual. The test method permits non-destructive detection of leaks not visibly detectable. The test method does not require the introduction of any extraneous materials or substances, such as dyes or gases. However, it is important to physically mask or block off any package porous barrier surface during the test to prevent rapid loss of chamber vacuum resulting primarily from gas migration through the porous surface. Leak detection is based solely on the ability to detect the change in pressure inside the test chamber resulting from gas or vapor egress from a package challenged with vacuum.
This test is a useful research tool for optimizing package sealing parameters and for comparatively evaluating various packages and materials. This test method is also applicable to production settings as it is rapid, non-invasive, and non-destructive, making it useful for either 100 % on-line testing or to perform tests on a statistical sampling from the production operation.
Leak test results that exceed the permissible limits for the vacuum decay test are indicated by audible or visual signal responses, or both.