首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E481-23
到馆提醒
收藏跟踪
购买正版
Standard Practice for Measuring Neutron Fluence Rates by Radioactivation of Cobalt and Silver 用钴和银的放射性测定中子通量率的标准实施规程
发布日期: 2023-06-01
1.1 本规程涵盖了在试验方法中所述使用镉作为热中子屏蔽的核反应堆环境中获得热中子注量率或注量的适当方法 第262页 由于诸如潜在光谱扰动之类的原因或者由于高于镉熔点的温度。 1.2 反应 59 公司( n、 γ ) 60 Co导致定义明确的伽马辐射源,半衰期为5.2711年 2. (8) 3. ( 1. ) 。 4. 反应 109 Ag(n,γ) 110米 Ag产生的核素具有众所周知的复杂衰变方案,半衰期为249.78(2)天 ( 1. ) 钴和银都可以以非常纯的形式或与其他金属如铝合金化的形式获得。 用作中子注量率监测器导线标准的铝合金中钴的参考源可作为标准参考材料(SRM)953从美国国家标准与技术研究所(NIST)获得。 5. 其他同位素的中子活化产生的竞争活动在很大程度上是通过等待短命产物在计数前消亡来消除的。采用合适的技术,热中子注量率在10 8. 厘米 −2 ·秒 −1 至3×10 15 厘米 −2 ·秒 −1 可以测量。第节介绍了两种计算方法 9 用于确定中子注量率。中描述的做法 9.3 可以在所有情况下使用。本规程描述了一种测量Westcott中子注量率的方法 9.2 ( 注1 )通过激活钴和银箔监视器(见术语 170欧元 )。为了使韦斯科特中子通量公约方法适用,测量位置必须很好地调节,并由麦克斯韦低能量分布和(1/ E )超热液分布。这些条件通常只在被氢慢化剂包围的位置满足,而附近没有强增殖或吸收材料。 注1: 韦斯科特注量率 1.3 以国际单位制表示的值应被视为标准,除非核数据中保留了源参考单位,以保持参考不确定度值的完整性。 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 3.1 此做法使用一个显示器(钴),其中/ v 吸收截面曲线和具有大共振峰的第二监测器(银),使得其共振积分与其热截面相比是大的。这两种反应的相关数据见 表1 这些方程是基于韦斯科特形式( ( 2. , 3. ) 和实践 第261页 )并确定Westcott 2200 m/s中子注量率 无电压 0 和Westcott超热液指数参数 .参考文献 ( 4个- 6. ) 包含对两种反应测试方法的一般性讨论。在这种实践中,钴和银监测器的绝对活性都是确定的。这与参考文献中的测试方法不同,在参考文献中只测定了一种绝对活性。 (A) 给定值后面括号中的数字是该值最后一位的不确定性;0.729(8)表示0.729±0.008,70.8(1)表示70.8±0.1。 (B) 衰变常数λ定义为ln(2)/t 1/2 以秒为单位 –1 ,其中t 1/2 是以秒为单位的核素半衰期。 (C) 使用计算 方程式10 。 (D) 在里面 图1 ,θ=4E r kT/AΓ 2. =0.2对应于 109 Ag用于 T =293 K时, ∑ r =N个 0 σ r、 最大,T=0K σ r、 最大,T=0K =31138.03谷仓,5.19 eV ( 13 ) .σ的值 r、 最大,T=0K =31138.03谷仓使用Breit-Wigner单能级共振公式计算 其中 109 Ag原子质量为A=108.9047558 amu ( 14 ) ,ENDF/B-VIII.0(MAT=4731) ( 13 ) 共振参数为:共振总宽度Γ=0.142733eV,地层中子宽度Γ n =0.0127333eV,辐射/衰变宽度Γ γ =0.13eV,共振自旋J=1,统计自旋因子 其中s 1. = 1. / 2. 和s 2. = 1. / 2. 是两个粒子(中子和 109 Ag基态 ( 15 ) )形成共振。 3.2 这种方法的优点是消除了与镉的使用相关的四个困难:( 1. )镉对磁场的扰动;( 2. )不精确的镉截止能量;( 3. )镉的熔化温度低;以及( 4. )在处理活性镉时遇到的高剂量率的可能性。 此外,随着镉的快速插入和去除,反应性的变化可能会禁止使用镉比率法。只有当钴和银的浓度较大时,自屏蔽校正才很重要,但对于稀释的合金(<1 %). 研究表明,两种反应法测定热中子注量的精度与镉比法相当 ( 16 ) 。 3.3 两个监测器的长半衰期允许确定长期监测的通量。
1.1 This practice covers a suitable means of obtaining the thermal neutron fluence rate, or fluence, in nuclear reactor environments where the use of cadmium, as a thermal neutron shield as described in Test Method E262 , is undesirable for reasons such as potential spectrum perturbations or due to temperatures above the melting point of cadmium. 1.2 The reaction 59 Co( n,γ ) 60 Co results in a well-defined gamma emitter having a half-life of 5.2711 years 2 (8) 3 ( 1 ) . 4 The reaction 109 Ag(n,γ) 110m Ag results in a nuclide with a well-known, complex decay scheme with a half-life of 249.78 (2) days ( 1 ) . Both cobalt and silver are available either in very pure form or alloyed with other metals such as aluminum. A reference source of cobalt in aluminum alloy to serve as a neutron fluence rate monitor wire standard is available from the National Institute of Standards and Technology (NIST) as Standard Reference Material (SRM) 953. 5 The competing activities from neutron activation of other isotopes are eliminated, for the most part, by waiting for the short-lived products to die out before counting. With suitable techniques, thermal neutron fluence rate in the range from 10 8 cm −2 ·s −1 to 3 × 10 15 cm −2 ·s −1 can be measured. Two calculational practices are described in Section 9 for the determination of neutron fluence rates. The practice described in 9.3 may be used in all cases. This practice describes a means of measuring a Westcott neutron fluence rate in 9.2 ( Note 1 ) by activation of cobalt- and silver-foil monitors (see Terminology E170 ). For the Wescott Neutron Fluence Convention method to be applicable, the measurement location must be well moderated and be well represented by a Maxwellian low-energy distribution and an (1/ E ) epithermal distribution. These conditions are usually only met in positions surrounded by hydrogenous moderator without nearby strongly multiplying or absorbing materials. Note 1: Westcott fluence rate 1.3 The values stated in SI units are to be regarded as the standard, except in the case of nuclear data where the source referenced units are retained in order to preserve the integrity of the referenced uncertainty values. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 3.1 This practice uses one monitor (cobalt) with a nearly 1/ v absorption cross-section curve and a second monitor (silver) with a large resonance peak so that its resonance integral is large compared to its thermal cross section. The pertinent data for these two reactions are given in Table 1 . The equations are based on the Westcott formalism ( ( 2 , 3 ) and Practice E261 ) and determine a Westcott 2200 m/s neutron fluence rate nv 0 and the Westcott epithermal index parameter . References ( 4- 6 ) contain a general discussion of the two-reaction test method. In this practice, the absolute activities of both cobalt and silver monitors are determined. This differs from the test method in the references wherein only one absolute activity is determined. (A) The numbers in parentheses following given values are the uncertainty in the last digit(s) of the value; 0.729 (8) means 0.729 ± 0.008, 70.8(1) means 70.8 ± 0.1. (B) The decay constant, λ, is defined as ln(2) / t 1/2 with units of sec –1 , where t 1/2 is the nuclide half-life in seconds. (C) Calculated using Eq 10 . (D) In Fig. 1 , Θ = 4E r kT/AΓ 2 = 0.2 corresponds to the value for 109 Ag for T = 293 K, ∑ r = N 0 σ r,max,T=0K σ r,max,T=0K = 31138.03 barn at 5.19 eV ( 13 ) . The value of σ r,max,T=0K = 31138.03 barns is calculated using the Breit-Wigner single-level resonance formula where the 109 Ag atomic mass is A = 108.9047558 amu ( 14 ) , the ENDF/B-VIII.0 (MAT = 4731) ( 13 ) resonance parameters are: resonance total width Γ = 0.1427333 eV, formation neutron width Γ n = 0.0127333 eV, and radiative/decay width Γ γ = 0.13 eV, with a resonance spin J=1, and the statistical spin factor where s 1 = 1 / 2 and s 2 = 1 / 2 are the spins of the two particles (neutron and 109 Ag ground state ( 15 ) ) forming resonance. 3.2 The advantages of this approach are the elimination of four difficulties associated with the use of cadmium: ( 1 ) the perturbation of the field by the cadmium; ( 2 ) the inexact cadmium cut-off energy; ( 3 ) the low melting temperature of cadmium; and ( 4 ) the potential for high dose-rate encountered when handling activated cadmium. In addition, the reactivity changes accompanying the rapid insertion and removal of cadmium may prohibit the use of the cadmium-ratio method. Self-shielding corrections are only important if the concentrations of cobalt and silver are large, but may be neglected for diluted alloys (<1 %). Studies indicate that the accuracy of the two-reaction method for determination of thermal neutron fluence is comparable to the cadmium-ratio method ( 16 ) . 3.3 The long half-lives of the two monitors permit the determination of fluence for long-term monitoring.
分类信息
关联关系
研制信息
归口单位: E10.05
相似标准/计划/法规