首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA ACE54290
到馆提醒
收藏跟踪
购买正版
Case Study: Forecasting Short-Term Water Demand Using Artificial Neural Networks 案例研究:使用人工神经网络预测短期需水量
发布日期: 2001-06-01
本演示的目的是描述人工神经网络(ANN)在短期需水量预测中的应用,并确定是否可以提高精度。本文总结了预测短期需水量的益处。对ANN进行了描述,并对其操作进行了详细说明。由于人工神经网络可以被训练来识别数据中的复杂关系和模式,因此它们可以快速准确地建模非线性关系,例如短期需水量预测中涉及的非线性关系。
The purpose of this presentation is to describe the application of an artificial neural network (ANN) to forecast short-term water demand, and determine if improvements in accuracy can be obtained. The paper summarizes the benefits of forecasting short-term water demand. ANN's are described and their operation detailed. As ANNs can be trained to recognize complex relationships and patterns in data they can rapidly and accurately model non-linear relationships such as those involved in short-term water demand forecasting.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规