首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 IEEE 3333.1.3-2022
到馆阅读
收藏跟踪
购买正版
IEEE Standard for the Deep Learning-Based Assessment of Visual Experience Based on Human Factors 基于人为因素的视觉体验深度学习评估IEEE标准
发布日期: 2022-05-27
本标准定义了基于深度学习的视觉内容分析和体验质量(QoE)评估指标,这是基于心理物理研究的三维(3D)内容的QoE和视觉舒适性评估标准(IEEE Std 3333.1.1)和三维和超高清(UHD)内容的感知质量评估标准(IEEE Std 3333.1.2)的扩展。范围包括以下内容。*用于QoE评估的深度学习模型(多层感知器、卷积神经网络、深度生成模型)*来自高清(HD)、超高清(UHD)、3D、高动态范围(HDR)、虚拟现实(VR)和混合现实(MR)内容的视觉体验深度指标*临床(脑电图(EEG)、心电图(ECG)、眼电图(EOG)的深度分析,等等)和心理物理(主观测试和模拟器疾病问卷(SSQ))数据,用于QoE评估*视觉内容的深度个性化偏好评估*必要时建立图像和视频数据库,用于性能基准测试
This standard defines deep learning-based metrics of content analysis and quality of experience (QoE) assessment for visual contents, which is an extension of the standard for the QoE and visual-comfort assessments of three-dimensional (3D) contents based on psychophysical studies (IEEE Std 3333.1.1) and the standard for the perceptual quality assessment of 3D and ultra-high definition (UHD) contents (IEEE Std 3333.1.2). The scope covers the following. * Deep learning models for QoE assessment (multilayer perceptrons, convolutional neural networks, deep generative models) * Deep metrics of visual experience from High Definition (HD), UHD, 3D, High Dynamic Range (HDR), Virtual Reality (VR) and Mixed Reality (MR) contents * Deep analysis of clinical (electroencephalogram (EEG), electrocardiogram (ECG), electrooculography (EOG), and so on) and psychophysical (subjective test and simulator sickness questionnaire (SSQ)) data for QoE assessment * Deep personalized preference assessment of visual contents * Building image and video databases for performance benchmarking purpose if necessary
分类信息
关联关系
研制信息
相似标准/计划/法规