首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D5758-01(2021)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction 通过X射线衍射测定沸石ZSM-5的相对结晶度的标准测试方法
发布日期: 2021-06-01
1.1 本试验方法涵盖了使用沸石X射线衍射图中选定的峰测定ZSM-5沸石相对结晶度的程序。 1.2 该测试方法提供了一个数字,即样品ZSM-5的一部分XRD图案的强度与参考ZSM-5图案的相应部分的强度之比。强度比以百分比表示,然后标记为XRD相对结晶度百分比/ZSM-5。这种比较通常用于沸石技术,通常称为结晶度百分比。 1.3 本标准并非旨在解决与其使用相关的所有安全问题(如有)。 本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.4 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 4.1 ZSM-5是一种可与SiO结晶的硅质沸石 2. /铝 2. O 3. 比率在20到1000之间。ZSM-5在后结晶步骤中改性为H-阳离子形式(HZSM-5),自20世纪70年代以来一直被用作形状选择性酸位催化剂,用于石油精炼和石化产品生产,包括烷基化、异构化、流体裂化催化(FCC)和甲醇制汽油等过程。ZSM-5家族中最含硅的一员,有时被称为硅分子筛,具有疏水性,用于从含水系统中选择性吸附有机分子。 4.2 该X射线程序旨在报告制造ZSM时的相对结晶度- 5.相对结晶度/ZSM-5数在技术、研究和规范中证明是有用的。 4.3 综合峰面积法(程序A)优于峰高法(程序B),因为它将XRD强度计算为多个峰的总和,而不是仅利用一个峰。ZSM-5分子筛晶胞内电子密度分布的变化可能导致ZSM-5分子筛XRD图谱中单个峰强度的剧烈变化。电子密度分布取决于以下因素: 4.3.1 客体分子填充孔隙的程度和这些客体分子的性质。 4.3.2 阳离子的类型及其存在程度(这些阳离子也可能影响ZSM-5样品对X射线的吸收)。 4.3.3 在这种XRD方法中,客体分子H 2. O完成孔隙填充。还可能存在其他客体分子类型,包括众多胺、二胺和季铵阳离子中的一种,它们可以作为ZSM-5结构结晶的模板。 4.3.4 由于上述因素 4.3.1 到 4.3.3 这可能会改变ZSM-5中XRD峰的强度,这种XRD方法将在参考ZSM时提供最佳的相对结晶度测定- 5和样品ZSM-5具有相似的制备和组成历史。 4.4 ZSM-5可以正交或单斜对称存在,这取决于前体凝胶的组成或结晶后改性条件,或两者兼有。在正交类型中,以23.1和23.8°2θ为中心的XRD峰通常分裂为双峰,而不太对称的单斜类型可能显示这些峰进一步分裂为三峰。这些峰的峰面积强度不受晶体形态的影响。正交晶型在24.3°2θ处的XRD峰是单线态,因此最适合峰高法(程序B)。 如果24.3°峰被拆分(单斜形式的双峰),则应使用积分峰面积法(程序A)。 4.5 如果样品中存在ZSM-5以外的晶相,其衍射峰可能与为综合峰面积法(程序A)选择的一些ZSM-5峰重叠。如果有理由怀疑存在此类成分,则应选择峰高法(程序B)进行分析,前提是不干扰用于计算的24.3°2θ峰。
1.1 This test method covers a procedure for determination of the relative crystallinity of zeolite ZSM-5 using selected peaks from the X-ray diffraction pattern of the zeolite. 1.2 The test method provides a number that is the ratio of intensity of a portion of the XRD pattern of the sample ZSM-5 to intensity of the corresponding portion of the pattern of a reference ZSM-5. The intensity ratio, expressed as a percentage, is then labeled percent XRD relative crystallinity/ZSM-5. This type of comparison is commonly used in zeolite technology and is often referred to as percent crystallinity. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 ZSM-5 is a siliceous zeolite that can be crystallized with SiO 2 /Al 2 O 3 ratio in the range of 20 to greater than 1000. ZSM-5, upon modification to the H-cation form (HZSM-5) in a post-crystallization step, has been used since the 1970s as a shape selective, acid-site catalyst for petroleum refining and petrochemicals production, including such processes as alkylation, isomerization, fluid cracking catalysis (FCC), and methanol-to-gasoline. The most siliceous member of the ZSM-5 family, sometimes called silicalite, is hydrophobic and it is used for selective sorption of organic molecules from water-containing systems. 4.2 This X-ray procedure is designed to allow a reporting of the relative degree of crystallization upon manufacture of ZSM-5. The relative crystallinity/ZSM-5 number has proven useful in technology, research, and specifications. 4.3 The Integrated Peak Area Method (Procedure A) is preferred over the Peak Height Method (Procedure B) since it calculates XRD intensity as a sum from several peaks rather than utilizing just one peak. Drastic changes in intensity of individual peaks in the XRD pattern of ZSM-5 can result from changes in distribution of electron density within the unit cell of the ZSM-5 zeolite. The electron density distribution is dependent upon the following factors: 4.3.1 Extent of filling of pores with guest molecules and the nature of these guest molecules. 4.3.2 Type of cations and extent of their presence (these cations may also affect the absorption of X rays by the ZSM-5 sample). 4.3.3 In this XRD method, the guest molecule H 2 O completes the filling of the pores. Other guest molecule types may also be present, including one of numerous amines, diamines, and quarternary ammonium cations that can function as a template for crystallization of the ZSM-5 structure. 4.3.4 Because of the factors mentioned in 4.3.1 to 4.3.3 that could vary the intensities of the XRD peaks in ZSM-5, this XRD method will provide the best determination of relative crystallinity when the reference ZSM-5 and sample ZSM-5 have a similar history of preparation and composition. 4.4 ZSM-5 can exist with either orthorhombic or monoclinic symmetry, depending upon the composition of the precursor gel or post-crystallization modification conditions, or both. In the orthorhombic type, the XRD peaks centered at about 23.1 and 23.8° 2θ are usually split into doublets, whereas the less symmetric monoclinic type may show a further split of these peaks into triplets. The peak area intensities of these peaks are unaffected by the crystalline form. The XRD peak at 24.3° 2θ for the orthorhombic form is a singlet and hence is the most suitable for the Peak Height Method (Procedure B). If the 24.3° peak is split (doublet in the monoclinic form), then the Integrated Peak Area Method (Procedure A) should be used. 4.5 If crystalline phases other than ZSM-5 are present in the sample, their diffraction peaks may overlap with some of the ZSM-5 peaks selected for the Integrated Peak Area Method (Procedure A). If there is reason to suspect the presence of such components, then the Peak Height Method (Procedure B) should be chosen for analysis provided that there is no interference with the 24.3° 2θ peak that is used for the calculation.
分类信息
关联关系
研制信息
归口单位: D32.05
相似标准/计划/法规
现行
ASTM D8352-20
Standard Test Method for Determination of Relative Crystallinity of Zeolite Beta by X-Ray Diffraction
用X射线衍射法测定β沸石相对结晶度的标准试验方法
2020-10-01
现行
ASTM D5357-19
Standard Test Method for Determination of Relative Crystallinity of Zeolite Sodium A by X-ray Diffraction
X射线衍射法测定A型沸石钠相对结晶度的标准试验方法
2019-04-01
现行
NB/SH/T 6024-2021
ZSM—5分子筛相对结晶度的测定 X射线衍射法
Standard test method for determination of relative crystallinity of zeolite ZSM-5 X-ray diffraction
2021-11-16
现行
NB/SH/T 0971-2018
SAPO-11分子筛相对结晶度的测定 粉末X射线衍射法
Standard test method for relative crystallinity of zeolite SAPO-11 by powder X-ray diffractometry
2018-10-29
现行
ASTM D7191-24
Standard Test Method for Determination of Moisture in Plastics by Relative Humidity Sensor
用相对湿度传感器测定塑料中水分的标准试验方法
2024-05-01
现行
ASTM D789-19
Standard Test Method for Determination of Relative Viscosity of Concentrated Polyamide (PA) Solutions
高浓度聚酰胺(PA)溶液相对粘度测定的标准试验方法
2019-08-01
现行
ASTM D5263-23
Standard Test Method for Determining the Relative Degree of Oxidation in Bituminous Coal by Alkali Extraction
用碱萃取法测定烟煤中相对氧化度的标准试验方法
2023-03-01
现行
ASTM G198-17(2023)
Standard Test Method for Determining the Relative Corrosion Performance of Driven Fasteners in Contact with Treated Wood
与处理过的木材接触的传动紧固件相对腐蚀性能测定的标准试验方法
2023-11-01
现行
ASTM F2170-19a
Standard Test Method for Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes
用原位探头测定混凝土楼板相对湿度的标准试验方法
2019-12-01
现行
ASTM D7546-24
Standard Test Method for Determination of Moisture in New and In-Service Lubricating Oils and Additives by Relative Humidity Sensor
用相对湿度传感器测定新的和使用中的润滑油和添加剂中水分的标准试验方法
2024-02-01
现行
ASTM F2661-07(2022)
Standard Test Method for Determining the Tribological Behavior and the Relative Lifetime of a Fluid Lubricant using the Spiral Orbit Tribometer
用螺旋轨道摩擦计测定流体润滑剂摩擦学性能和相对寿命的标准试验方法
2022-01-01
现行
ASTM D6925-23
Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor
用Superpave回转压实机制备和测定沥青混合料样品相对密度的标准试验方法
2023-12-01
现行
ASTM D3906-19
Standard Test Method for Determination of Relative X-ray Diffraction Intensities of Faujasite-Type Zeolite-Containing Materials
测定含浮石型沸石材料的相对X射线衍射强度的标准试验方法
2019-04-01
现行
ASTM D8541-24
Standard Test Method for Determination of Relative Rotation to Evaluate the Workability of Asphalt Mixture Using Wireless Particle-Size Sensors
用无线粒度传感器测定相对旋转以评估沥青混合料工作性能的标准试验方法
2024-06-01
现行
ASTM D7370/D7370M-14(2021)
Standard Test Method for Determination of Relative Density and Absorption of Fine, Coarse, and Blended Aggregate Using Combined Vacuum Saturation and Rapid Submersion
使用组合真空饱和和快速浸没测定细 粗和混合聚集体的相对密度和吸收的标准测试方法
2021-05-01
现行
ASTM F1927-20
Standard Test Method for Determination of Oxygen Gas Transmission Rate, Permeability and Permeance at Controlled Relative Humidity Through Barrier Materials Using a Coulometric Detector
用库仑检测器测定在受控相对湿度下通过阻挡材料的氧气传输速率、渗透性和渗透性的标准试验方法
2020-06-01
现行
API MPMS Chapter 9.2-2022
API MPMS Chapter 9 - Density Determination, Section 2-Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure Hydrometer, Fourth Edition
API MPMS第9章-密度测定 第2节-用压力液体比重计测定轻烃密度或相对密度的标准试验方法 第四版
2022-11-01
现行
ASTM D8188-23
Standard Test Method for Determination of Density and Relative Density of Asphalt, Semi-Solid Bituminous Materials, and Soft-Tar Pitch by Use of a Digital Density Meter (U-Tube)
用数字密度计(U型管)测定沥青、半固体沥青材料和软沥青密度和相对密度的标准试验方法
2023-05-01