首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM G197-14(2021)
到馆提醒
收藏跟踪
购买正版
Standard Table for Reference Solar Spectral Distributions: Direct and Diffuse on 20° Tilted and Vertical Surfaces 参考太阳光谱分布标准表:20°倾斜和垂直表面上的直接和漫反射
发布日期: 2021-07-01
1.1 该表提供了地面太阳光谱辐照度分布,可作为加权函数用于 (1) 根据其光谱特性计算开窗的宽带太阳透射率或透光率;或 (2) 评估光伏发电机等建筑集成技术的性能。这些系统大多安装在垂直墙上,但也有一些安装在倾斜屋顶或其他倾斜结构上,如阳光空间。玻璃透射率计算或测量需要有关辐照度的直接和漫反射分量的信息。该表提供了直接辐照度和漫辐照度的单独信息,以及相对于水平面的20°和90°两个不同倾斜角度的单独信息。所有分布均在光谱范围280–4000 nm内的2002波长下提供。此表中包含的数据反映了均匀波长间隔(0。 400 nm以下为5纳米(nm),400至1700 nm之间为1纳米,1702 nm处为中间波长,1705至4000 nm之间为5纳米间隔)。数据表表示合理的无云大气条件,有利于门窗系统的计算机模拟、比较评级或实验测试。 1.2 此表中包含的数据是使用Gueymard开发的SMARTS 2.9.2版大气传输模型生成的 ( 1. , 2. ) . 1.3 选择SMARTS辐射模型来生成光谱分布是为了与以前的标准(ASTM)兼容 G173页 和 G177 ). 大气和气候条件与ASTM中的相同 G173页 . 环境条件也相同,只有一个例外(见第节) 4.3 和 X1.2 ). 1.4 该表定义了四种太阳光谱辐照度分布: 1.4.1 在海平面上,对于气团1.5,在280–4000 nm波长范围内,分离入射到面向太阳的20°倾斜表面上的直接和漫反射太阳光谱辐照度。 1.4.2 在海平面上,对于气团1.5,在280–4000 nm波长范围内,分离入射到面向太阳的90°(垂直)倾斜表面上的直接和漫反射太阳光谱辐照度。 1.5 可以使用该模型计算背向太阳(即阴影)的垂直表面上或背向太阳的任何规定方位上的漫反射光谱分布,以获得代表性结果(即在可接受方差范围内的结果)。 1.6 所选的气候、大气和几何参数反映了提供一组真实的光谱分布的条件,这些光谱分布适用于在非常晴朗的天空条件下的建筑应用,代表了近- 建筑物的最大太阳能热增益。 1.7 暴露表面可能存在多种方向或局部环境条件。用于生成标准光谱的SMARTS模型(作为本标准的附件)的可用性允许用户评估相对于此处指定光谱的光谱差异。 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 本标准无意解决倾斜或垂直开窗或建筑集成系统在一天、一个季节或一年内的平均光谱辐照度。 当这些系统暴露在晴朗的天空条件下时,选择光谱辐照度分布来表示合理的接近太阳辐射上限,类似于用于计算建筑物太阳热负荷的条件。漫反射光谱辐照度分布也可用于表示这些系统在阳光直射下被遮挡时的条件。 5.2 太阳辐射的吸收率、反射率和透射率是研究半透明板透光性的重要因素。这些特性通常是波长的函数,在计算太阳加权特性之前,需要知道太阳通量的光谱分布。 5.3 为了通过计算机模拟比较竞争产品的相对性能,或者比较在实验室条件下进行实验测试的产品的性能,需要直接辐照度和漫射辐照度的参考标准太阳光谱分布。 5.4 该表提供了适当的标准光谱辐照度分布,用于确定半透明材料和其他系统的相对光学性能。该表可用于评估组件和材料,以进行太阳模拟,其中分别需要直射和漫反射光谱太阳辐照度。 5.5 对于平坦地球上的平面平行大气,选定的空气质量值为1.5,对应于48.19°的天顶角。空气质量的SMARTS2计算考虑了大气曲率和分子的垂直密度分布,这导致太阳天顶角为48.236°,或等效平面平行大气空气质量为1.50136。因此,SMARTS计算的直射光束辐照度入射在面向太阳的20°倾斜平面上的入射角为28.236°。它是41。 对于面向太阳的90°倾斜表面,为764°。 5.6 20°和90°倾斜表面上参考直接辐射的SMARTS模型输出图如所示 图1 . 类似的图,但对于漫射辐射,如所示 图2 . 5.7 SMARTS在规定条件和20°倾斜表面下生成光谱所需的输入如所示 表1 . 90°倾斜表面的输入文件仅相差一行。此修改的行显示在 表2 . 5.8 在280-4000 nm光谱范围内积分的总辐照度为791.07、93.02、97.96和889.03 W·m -2 对于直接、天空漫射、总漫射和全球辐射分别入射到20°倾斜表面。它是669.74、58.66、140.56和810.30 W·m -2 分别针对90°倾斜表面上的直接、天空漫反射、总漫反射和全局辐射入射。 5.9 智能辅助标准计算机软件的可用性允许人们 (a) 使用上述输入参数再现参考光谱; (b) 计算测试光谱,尝试在指定的半高宽下匹配测量数据,并评估大气条件; (c) 计算代表相对于任何一个或所有参考光谱进行分析的特定条件的测试光谱; (d) 分别获得天空漫反射光谱和地面反射漫反射光谱(其总和见表);和 (e) 使用后处理选项将光谱结果平滑到不同分辨率和波长步长。
1.1 This table provides terrestrial solar spectral irradiance distributions that may be employed as weighting functions to (1) calculate the broadband solar or light transmittance of fenestration from its spectral properties; or (2) evaluate the performance of building-integrated technologies such as photovoltaic electricity generators. Most of these systems are installed on vertical walls, but some are also installed on pitched roofs or on other tilted structures, such as sunspaces. Glazing transmittance calculations or measurements require information on both the direct and diffuse components of irradiance. The table provides separate information for direct and diffuse irradiance, and for two different tilt angles, 20° and 90° relative to the horizontal. All distributions are provided at 2002 wavelengths within the spectral range 280–4000 nm. The data contained in this table reflect reference spectra with uniform wavelength interval (0.5 nanometer (nm) below 400 nm, 1 nm between 400 and 1700 nm, an intermediate wavelength at 1702 nm, and 5 nm intervals from 1705 to 4000 nm). The data table represents reasonable cloudless atmospheric conditions favorable for the computerized simulation, comparative rating, or experimental testing of fenestration systems. 1.2 The data contained in this table were generated using the SMARTS version 2.9.2 atmospheric transmission model developed by Gueymard ( 1 , 2 ) . 1.3 The selection of the SMARTS radiative model to generate the spectral distributions is chosen for compatibility with previous standards (ASTM G173 and G177 ). The atmospheric and climatic conditions are identical to those in ASTM G173 . The environmental conditions are also identical, with only one exception (see sections 4.3 and X1.2 ). 1.4 The table defines four solar spectral irradiance distributions: 1.4.1 Separate direct and diffuse solar spectral irradiance incident on a sun-facing, 20° tilted surface in the wavelength region from 280–4000 nm for air mass 1.5, at sea level. 1.4.2 Separate direct and diffuse solar spectral irradiance incident on a sun-facing, 90° (vertical) tilted surface in the wavelength region from 280–4000 nm for air mass 1.5, at sea level. 1.5 The diffuse spectral distribution on a vertical surface facing away from the sun (i.e., shaded), or at any prescribed azimuth away from the sun, may be computed using the model to obtain representative results (i.e., results that fall within an acceptable range of variance). 1.6 The climatic, atmospheric, and geometric parameters selected reflect the conditions to provide a realistic set of spectral distributions appropriate for building applications under very clear-sky conditions, representative of near-maximum solar heat gains in buildings. 1.7 A wide variety of orientations or local environmental conditions is possible for exposed surfaces. The availability of the SMARTS model (as an adjunct to this standard) used to generate the standard spectra allows users to evaluate spectral differences relative to the spectra specified here. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This standard does not purport to address the mean spectral irradiance incident on tilted or vertical fenestration or building-integrated systems over a day, a season, or a year. The spectral irradiance distributions have been chosen to represent a reasonable near-upper limit for solar radiation when these systems are exposed to clear-sky conditions similar to those used to calculate solar heat loads of buildings. The diffuse spectral irradiance distributions can also be used to represent conditions when these systems are shaded from the direct sun. 5.2 Absorptance, reflectance, and transmittance of solar radiation are important factors in studies of light transmission through semi-transparent plates. These properties are normally functions of wavelength, which require that the spectral distribution of the solar flux be known before the solar-weighted property can be calculated. 5.3 To compare the relative performance of competitive products by computerized simulations, or to compare the performance of products subjected to experimental tests in laboratory conditions, a reference standard solar spectral distribution for both direct and diffuse irradiance is desirable. 5.4 The table provides appropriate standard spectral irradiance distributions for determining the relative optical performance of semi-transparent materials and other systems. The table may be used to evaluate components and materials for the purpose of solar simulation where the direct and the diffuse spectral solar irradiances are needed separately. 5.5 The selected air mass value of 1.5 for a plane-parallel atmosphere above a flat earth corresponds to a zenith angle of 48.19°. The SMARTS2 computation of air mass accounts for atmospheric curvature and the vertical density profile of molecules, which results in a solar zenith angle of 48.236°, or an equivalent plane-parallel-atmosphere air mass of 1.50136. The angle of incidence computed by SMARTS for the direct beam irradiance incident on a 20°-tilted plane facing the sun is thus 28.236°. It is 41.764° for a 90°-tilted surface facing the sun. 5.6 A plot of the SMARTS model output for the reference direct radiation on a 20° and 90° tilted surfaces is shown in Fig. 1 . A similar plot, but for diffuse radiation, is shown in Fig. 2 . 5.7 The input needed by SMARTS to generate the spectra for the prescribed conditions and the 20°-tilted surface is provided in Table 1 . The input file for the 90°-tilted surface differs only by one line. This modified line appears in Table 2 . 5.8 The total irradiance, integrated over the spectral range 280–4000 nm, is 791.07, 93.02, 97.96, and 889.03 W·m -2 for direct, sky diffuse, total diffuse and global radiation incident on the 20° tilted surface, respectively. It is 669.74, 58.66, 140.56, and 810.30 W·m -2 for direct, sky diffuse, total diffuse and global radiation incident on the 90° tilted surface, respectively. 5.9 The availability of the adjunct standard computer software for SMARTS allows one to (a) reproduce the reference spectra, using the above input parameters; (b) compute test spectra to attempt to match measured data at a specified FWHM, and evaluate atmospheric conditions; (c) compute test spectra representing specific conditions for analysis vis-à-vis any one or all of the reference spectra; (d) obtain the sky diffuse and the ground-reflected diffuse spectra (whose sum appears in the table) separately; and (e) smooth the spectral results to different resolution and wavelength step by using the postprocessing options.
分类信息
关联关系
研制信息
归口单位: G03.09
相似标准/计划/法规