首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D5568-22a
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Measuring Relative Complex Permittivity and Relative Magnetic Permeability of Solid Materials at Microwave Frequencies Using Waveguide 用波导测量微波频率下固体材料的相对复介电常数和相对磁导率的标准试验方法
发布日期: 2022-09-01
1.1 本试验方法包括测定各向同性、倒数(非旋磁)固体材料的相对复介电常数(相对介电常数和损耗)和相对磁导率的程序。如果材料是非磁性的,则可以仅使用此程序测量介电常数。 1.2 此测量方法在约100 MHz至40 GHz以上的频率范围内有效。这些限值并不精确,取决于试样的尺寸、用作试样夹持器的矩形波导传输线的尺寸以及用于进行测量的网络分析仪的适用频率范围。 样本尺寸的大小受测试频率、样本固有电磁特性和算法要求的限制。作为一种非共振方法,在测量频带中选择任意数量的离散测量频率是合适的。需要使用多种矩形波导传输线尺寸,以覆盖整个频率范围(100 MHz至40 GHz)。这种测试方法也可普遍应用于圆波导测试夹具。当样品具有平面内各向异性或难以精确制造时,矩形波导夹具优于同轴夹具。 1.3 以国际单位表示的数值应视为标准值。括号中给出的值以英寸-磅为单位,仅供参考。此处所示的方程式假设e +jω 吨 谐波时间约定。 1.4 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 5.1 射频(RF)、微波和毫米波组件的设计计算需要了解工作频率下的复介电常数和磁导率值。该试验方法可用于评估电磁应用中使用的小批量试验材料或连续生产材料。使用此方法仅测定复介电常数(在非磁性材料中),或同时测定复介电常数和磁导率。 5.2 相对复介电常数(相对复介常数),ε r * ,是电场与电通量密度相关的比例因子,取决于分子极化率、电荷迁移率等固有材料特性: 哪里: ε 0 = 自由空间的介电常数, D → = 电通量密度矢量,以及 E → = 电场矢量。 注1: 在常见用法中,“相对”一词经常被省略。复相对介电常数的实部(ε r ′ )通常简称为相对介电常数、介电常数或介电常数。复相对介电常数的虚部(ε r ′ ′ )通常称为损失系数。在各向异性介质中,介电常数由三维张量描述。 注2: 在本试验方法中,介质被认为是各向同性的,因此,在每个频率下,介电常数都是一个复数。 5.3 相对复合渗透率,μ r * ,是将磁通密度与磁场联系起来的比例因子,它取决于固有材料特性,如磁矩、磁畴磁化等: 哪里: μ 0 = 自由空间的渗透性, B → = 磁通量密度矢量,以及 H → = 磁场矢量。 注3: 在常见用法中,“相对”一词经常被省略。复合相对渗透率的实部(μ r ′ )通常称为相对渗透率或简单的渗透率。复相对渗透率虚部(μ r ″ )通常称为磁损耗系数。在各向异性介质中,渗透率由三维张量描述。 注4: 在本试验方法中,介质被认为是各向同性的,因此渗透率在每个频率下都是一个复数。 5.4 相对介电常数(相对介电常量)(SIC)κ′(ε r ))是相对复介电常数的实部。它也是等效并联电容的比值, C p 电极的给定配置,其材料为电容的电介质, C υ ,具有与电介质相同的真空(或最实用的空气)电极配置: 注5: 在常见用法中,“相对”一词经常被省略。 注6: 在实验上,真空必须在电容发生显著变化的所有点上被材料所取代。假设电介质的等效电路包括 C p 电容与电导平行。(见试验方法图3 150天 .) 注7: C x个 被认为是 C p ,等效并联电容,如《试验方法》图3所示 150天 . 注8: 串联电容大于并联电容小于1 % 耗散系数为0.1,且小于0。 1. % 对于0.03的耗散系数。如果测量电路产生串联元件的结果,则必须根据试验方法的等式5计算并联电容 150天 在计算修正值和介电常数之前。 注9: 干空气在23时的介电常数 °C,101.3 kPa时的标准压力为1.000536。其偏离单位,κ′ − 1,与绝对温度成反比,与大气压力成正比。当空间在23℃被水蒸气饱和时,介电常数的增加 °C为0.00025,与以摄氏度表示的温度近似呈线性变化,从10 °C至27 摄氏度。 对于部分饱和,增加与相对湿度成正比。
1.1 This test method covers a procedure for determining relative complex permittivity (relative dielectric constant and loss) and relative magnetic permeability of isotropic, reciprocal (non-gyromagnetic) solid materials. If the material is nonmagnetic, it is acceptable to use this procedure to measure permittivity only. 1.2 This measurement method is valid over a frequency range of approximately 100 MHz to over 40 GHz. These limits are not exact and depend on the size of the specimen, the size of rectangular waveguide transmission line used as a specimen holder, and on the applicable frequency range of the network analyzer used to make measurements. The size of specimen dimension is limited by test frequency, intrinsic specimen electromagnetism properties, and the request of algorithm. Being a non-resonant method, the selection of any number of discrete measurement frequencies in a measurement band would be suitable. Use of multiple rectangular waveguide transmission line sizes are required to cover this entire frequency range (100 MHz to 40 GHz). This test method can also be generally applied to circular waveguide test fixtures. The rectangular waveguide fixture is preferred over coaxial fixtures when samples have in-plane anisotropy or are difficult to manufacture precisely. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are in inch-pound units and are included for information only. The equations shown here assume an e +jω t harmonic time convention. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Design calculations for radio frequency (RF), microwave, and millimetre-wave components require the knowledge of values of complex permittivity and permeability at operating frequencies. This test method is useful for evaluating small experimental batch or continuous production materials used in electromagnetic applications. Use this method to determine complex permittivity only (in non-magnetic materials), or both complex permittivity and permeability simultaneously. 5.2 Relative complex permittivity (relative complex dielectric constant), ε r * , is the proportionality factor that relates the electric field to the electric flux density, and which depends on intrinsic material properties such as molecular polarizability, charge mobility, and so forth: where: ε 0 = the permittivity of free space, D → = the electric flux density vector, and E → = the electric field vector. Note 1: In common usage the word “relative” is frequently dropped. The real part of complex relative permittivity (ε r ′ ) is often referred to as simply relative permittivity, permittivity, or dielectric constant. The imaginary part of complex relative permittivity (ε r ′ ′ ) is often referred to as the loss factor. In anisotropic media, permittivity is described by a three dimensional tensor. Note 2: For the purposes of this test method, the media is considered to be isotropic and, therefore, permittivity is a single complex number at each frequency. 5.3 Relative complex permeability, μ r * , is the proportionality factor that relates the magnetic flux density to the magnetic field, and which depends on intrinsic material properties such as magnetic moment, domain magnetization, and so forth: where: μ 0 = the permeability of free space, B → = the magnetic flux density vector, and H → = the magnetic field vector. Note 3: In common usage the word “relative” is frequently dropped. The real part of complex relative permeability (μ r ′ ) is often referred to as relative permeability or simply permeability. The imaginary part of complex relative permeability (μ r ″ ) is often referred to as the magnetic loss factor. In anisotropic media, permeability is described by a three dimensional tensor. Note 4: For the purposes of this test method, the media is considered to be isotropic, and therefore permeability is a single complex number at each frequency. 5.4 Relative permittivity ((relative dielectric constant) (SIC) κ′(ε r )) is the real part of the relative complex permittivity. It is also the ratio of the equivalent parallel capacitance, C p , of a given configuration of electrodes with a material as a dielectric to the capacitance, C υ , of the same configuration of electrodes with vacuum (or air for most practical purposes) as the dielectric: Note 5: In common usage the word “relative” is frequently dropped. Note 6: Experimentally, vacuum must be replaced by the material at all points where it makes a significant change in capacitance. The equivalent circuit of the dielectric is assumed to consist of C p , a capacitance in parallel with conductance. (See Fig. 3 of Test Methods D150 .) Note 7: C x is taken to be C p , the equivalent parallel capacitance as shown in Fig. 3 of Test Methods D150 . Note 8: The series capacitance is larger than the parallel capacitance by less than 1 % for a dissipation factor of 0.1, and by less than 0.1 % for a dissipation factor of 0.03. If a measuring circuit yields results in terms of series components, the parallel capacitance must be calculated from Eq 5 of Test Methods D150 before the corrections and permittivity are calculated. Note 9: The permittivity of dry air at 23 °C and standard pressure at 101.3 kPa is 1.000536. Its divergence from unity, κ′ − 1, is inversely proportional to absolute temperature and directly proportional to atmospheric pressure. The increase in permittivity when the space is saturated with water vapor at 23 °C is 0.00025, and varies approximately linearly with temperature expressed in degrees Celsius, from 10 °C to 27 °C. For partial saturation the increase is proportional to the relative humidity.
分类信息
关联关系
研制信息
归口单位: D09.12
相似标准/计划/法规
现行
ASTM D7449/D7449M-22a
Standard Test Method for Measuring Relative Complex Permittivity and Relative Magnetic Permeability of Solid Materials at Microwave Frequencies Using Coaxial Air Line
用同轴空气管测量微波频率下固体材料的相对复介电常数和相对磁导率的标准试验方法
2022-09-01
现行
BS EN 61338-1-3-2000
Waveguide type dielectric resonators.-General information and test conditions. Measurement method of complex relative permittivity for dielectric resonator materials at microwave frequency
波导型介质谐振器
2000-06-15
现行
BS EN 61338-1-4-2006
Waveguide type dielectric resonators-General information and test conditions. Measurement method of complex relative permittivity for dielectric resonator materials at millimetre-wave frequency
波导型介质谐振器 一般信息和测试条件 毫米波频率下介质谐振器材料复相对介电常数的测量方法
2007-12-31
现行
KS C IEC 61338-1-3
도파관형 유전체 공진기 ─ 제1-3부: 일반 정보 및 시험 조건 ─ 마이크로파 주파수에서 유전체 공진기 소재에 대한 복소 비유전율 측정 방법
波导型介质谐振器第1-3部分:一般信息和试验条件微波频率下介质谐振器材料复相对介电常数的测量方法
2018-11-08
现行
IEC 61338-1-3-1999
Waveguide type dielectric resonators - Part 1-3: General information and test conditions - Measurement method of complex relative permittivity for dielectric resonator materials at microwave frequency
波导型介质谐振器.第1-3部分:一般信息和试验条件.微波频率下介质谐振器材料复相对介电常数的测量方法
1999-11-30
现行
KS C IEC 61338-1-3(2023 Confirm)
도파관형 유전체 공진기 ─ 제1-3부: 일반 정보 및 시험 조건 ─ 마이크로파 주파수에서 유전체 공진기 소재에 대한 복소 비유전율 측정 방법
波导型介质谐振器第1-3部分:一般信息和试验条件微波频率下介质谐振器材料复相对介电常数的测量方法
2018-11-08
现行
KS C IEC 61338-1-4
도파관형 유전체 공진기 ─ 제1-4부: 일반정보 및 시험 조건 ─ 밀리미터파 주파수에서 유전체 공진기 소재에 대한 복소 비유전율 측정방법
波导型介质谐振器第1-4部分:一般信息和试验条件毫米波频率下介质谐振器材料复相对介电常数的测量方法
2018-11-08
现行
IEC 61338-1-4-2005
Waveguide type dielectric resonators - Part 1-4: General information and test conditions - Measurement method of complex relative permittivity for dielectric resonator materials at millimetre-wave frequency
波导型介质谐振器 - 第1-4部分:通用信息和测试条件 - 毫米波频率下介质谐振器材料的复相对介电常数的测量方法
2005-11-08
现行
KS C IEC 61338-1-4(2023 Confirm)
도파관형 유전체 공진기 ─ 제1-4부: 일반정보 및 시험 조건 ─ 밀리미터파 주파수에서 유전체 공진기 소재에 대한 복소 비유전율 측정방법
波导型介质谐振器─ 第1-4部分:一般信息和试验条件─ 毫米波频率下介质谐振器材料复相对介电常数的测量方法
2018-11-08
现行
DIN EN 61338-1-3
Waveguide type dielectric resonators - Part 1-3: General information and test conditions; Measurement method of complex relative permittivity for dielectric resonator materials at microwave frequency (IEC 61338-1-3:1999); German version EN 61338-1-3:2000
波导型介质谐振器.第1-3部分:一般信息和试验条件;微波频率下介质谐振器材料复相对介电常数的测量方法(IEC 61338-1-3-1999);德文版EN 61338-1-3:2000
2000-10-01
现行
DIN EN 61338-1-4
Waveguide type dielectric resonators - Part 1-4: General information and test conditions - Measurement method of complex relative permittivity for dielectric resonator materials at millimetre-wave frequency (IEC 61338-1-4:2005); German version EN 61338-1-4:2006
波导型介质谐振器.第1-4部分:一般信息和试验条件.毫米波频率下介质谐振器材料复相对介电常数的测量方法(IEC 61338-1-4-2005);德文版EN 61338-1-4:2006
2006-06-01