1.1
这些试验方法包括实验室压实方法,用于确定4英寸或6英寸压实土壤的成型含水量和干容重(压实曲线)之间的关系。(101.6或152.4-mm)直径的模具,带有5.50-lbf(24.5-N)的夯锤,从12.0英寸的高度掉落。(305 mm)产生12的压缩力 400英尺磅/英尺
3.
(600 kN-m/m
3.
).
注1:
设备和程序与R.R.Proctor提出的类似(
工程新闻记录
-1933年9月7日),但有一个重大例外:他的锤击是以“12英寸的坚定打击”而不是自由落体的方式进行的,根据操作者的不同产生不同的压实力,但可能在15范围内 000至25 000英尺-
磅/英尺
3.
(700至1200 kN-m/m
3.
). 标准作用力测试(参见
3.1.4
)有时被称为普氏试验。
1.1.1
土壤和土壤骨料混合物应视为天然细颗粒或粗颗粒土壤,或天然土壤的复合物或混合物,或天然和加工土壤的混合物或骨料,如砾石或碎石。以下简称土壤或材料。
1.2
这些试验方法仅适用于具有30 % 或更少(按颗粒质量计)
3.
/
4.
-在中。(19.0-mm)筛子,之前未在实验室压实;也就是说,不要重复使用压实的土壤。
1.2.1
对于具有30 % 或更少(按保留在
3.
/
4.
-在中。(19.0-mm)筛至单位重量和通过部分的成型水含量
3.
/
4.
-在中。(19.0-mm)筛,见实践
D4718/D4718M
.
1.3
提供了三种替代方法。所用方法应符合被测材料规范的规定。如果没有规定方法,则应根据材料级配进行选择。
1.3.1
方法A:
1.3.1.1
模具-
4英寸。(101.6-mm)直径。
1.3.1.2
材料-
通过4号(4.75-mm)筛。
1.3.1.3
图层-
三
1.3.1.4
每层锤击数-
25
1.3.1.5
用法-
如果25,则可以使用 % 或更少(参见
1.4
)按质量计,材料保留在4号(4.75-mm)筛上。
1.3.1.6
其他用途-
如果无法满足该级配要求,则可以使用方法C。
1.3.2
方法B:
1.3.2.1
模具-
4英寸。(101.6-mm)直径。
1.3.2.2
材料-
经过
3.
/
8.
-在中。(9.5-mm)筛。
1.3.2.3
图层-
三
1.3.2.4
每层锤击数-
25
1.3.2.5
用法-
如果25,则可以使用 % 或更少(参见
1.4
)按材料质量保留在
3.
/
8.
-在中。(9.5-mm)筛。
1.3.2.6
其他用途-
如果无法满足该级配要求,则可以使用方法C。
1.3.3
方法C:
1.3.3.1
模具-
6英寸。(152.4-mm)直径。
1.3.3.2
材料-
经过
3.
/
4.
-在中。(19.0-mm)筛。
1.3.3.3
图层-
三
1.3.3.4
每层锤击数-
56
1.3.3.5
用法-
如果30,则可以使用 % 或更少(参见
1.4
)按材料质量保留在
3.
/
4.
-在中。(19.0-mm)筛。
1.3.4
6英寸。(152.4-mm)直径的模具不得与方法A或B一起使用。
注2:
研究发现,当在不同尺寸的模具中以相同的压实力测试材料时,结果略有不同,较小的模具尺寸通常会产生较大的密度/单位重量值(
1.
,第21页+。
2.
1.4
如果试样包含5个以上 % 根据超大粒级(粗粒级)的质量和材料不包括在试验中,必须使用实践对试样的单位质量和成型含水量或适当的现场密度试样进行修正
D4718/D4718M
.
1.5
该试验方法通常会为非自由排水土壤产生明确定义的最大干容重。如果本试验方法用于自由排水土壤,则可能无法很好地定义最大单位重量,并且可能小于使用试验方法获得的最大单位重量
D4253
.
1.6
所有观察值和计算值应符合实践中确定的有效数字和舍入准则
D6026
,除非被本标准取代。
1.6.1
为了将测量值或计算值与规定限值进行比较,测量值或计算值应四舍五入至规定限值中最接近的小数或有效数字。
1.6.2
本标准中用于规定如何收集/记录或计算数据的程序被视为行业标准。此外,它们代表了通常应保留的有效数字。使用的程序不考虑材料变化、获取数据的目的、特殊目的研究或用户目标的任何考虑因素;
通常的做法是增加或减少报告数据的有效位数,以与这些考虑因素相称。考虑工程设计分析方法中使用的有效数字超出了本标准的范围。
1.7
以英寸-磅为单位的数值应视为标准值。以国际单位制表示的数值仅供参考,质量单位除外。质量单位仅采用国际单位制,g或kg。
1.7.1
工程专业中的常见做法是同时使用磅来表示质量单位(lbm)和力(lbf)。这隐含地结合了两个独立的单元系统;也就是说,绝对系统和引力系统。
在一个标准中结合使用两套独立的英寸-磅单位在科学上是不可取的。本标准是在处理英寸-磅系统时使用重力单位制编写的。在该系统中,磅(lbf)表示力(重量)的单位。然而,使用天平或天平记录磅质量(lbm)或记录密度(lbm/ft)
3.
不应视为不符合本标准。
1.8
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.9
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
5.1
将作为工程填料(路堤、基础垫层、道路基层)铺设的土壤压实至密实状态,以获得令人满意的工程特性,如抗剪强度、压缩性或渗透性。此外,经常对地基土进行压实,以改善其工程特性。实验室压实试验为确定达到所需工程特性所需的压实百分比和成型含水量以及控制施工以确保达到所需压实度和含水量提供了依据。
5.2
在设计工程填料期间,剪切、固结、渗透性或其他测试需要通过在某些成型含水量下压实至某些单位重量来制备试样。通常先确定最佳含水量(
w
选择
)和最大干容重(γ
d、 最大值
)通过压实试验。在选定的成型含水量下压实试样(
w
),最佳湿态或干态(
w
选择
)或处于最佳状态(
w
选择
),并在与最大干容重百分比(γ)相关的选定干容重下
d、 最大值
). 成型含水量的选择(
w
),最佳湿态或干态(
w
选择
)或处于最佳状态(
w
选择
)和干容重(γ
d、 最大值
)可以基于过去的经验,或者可以调查一系列值,以确定必要的压实百分比。
5.3
经验表明
5.2
或中讨论的施工控制方面
5.1
在处理某些土壤时,极难实施或产生错误结果。
5.3.1 –
5.3.3
描述典型问题土壤、处理此类土壤时遇到的问题以及这些问题的可能解决方案。
5.3.1
超大分数-
含30%以上的土壤 % 超大部分(保留在
3.
/
4.
-在中。(19 mm)筛)是一个问题。对于此类土壤,没有ASTM测试方法来控制其压实度,很少有实验室配备来确定此类土壤的实验室最大单位重量(密度)(美国农业部复垦局,丹佛,科罗拉多州和美国。
S、 陆军工程兵团,密歇根州维克斯堡)。尽管试验方法
D4914/D4914M
和
D5030/D5030M
确定此类土壤的“现场”干容重,很难且成本高昂。
5.3.1.1
设计和控制此类土壤压实的一种方法是使用试验填料来确定所需的压实度和获得该压实度的方法,然后使用方法规范来控制压实度。方法规范的组成部分通常包括要使用的压实设备的类型和尺寸、提升厚度、成型含水量的可接受范围和通过次数。
注3:
土方工程项目压实控制的成功实施,尤其是在使用方法规范时,在很大程度上取决于承包商和检查员的质量和经验。
5.3.1.2
另一种方法是使用美国农业部复垦局开发的密度校正系数
(
2.
,
3.
)
和美国工程兵团
(
4.
)
. 这些修正系数可适用于含约50至70%的土壤 % 超大分数。每个机构对这些密度校正系数使用不同的术语。美国农业部复垦局使用
D
比率(或
D
–值),而美国工程兵团使用密度干扰系数(
我
c
).
5.3.1.3
更换技术(试验方法)的使用
D698
–78,方法D),其中用更细的分数替换过大的分数,不适合确定最大干容重γ
d、 最大值
,含超大粒级的土壤
(
4.
)
.
5.3.2
降级-
含有在压实过程中降解的颗粒的土壤是一个问题,尤其是当实验室压实过程中的降解比现场压实过程中的降解更多时,这是一个典型的问题。降解通常发生在颗粒残余土壤或骨料的压实过程中。当发生降解时,最大干容重增加(
1.
,第73页),因此实验室最大值不能代表现场条件。在这些情况下,通常不可能在现场实现最大干容重。
5.3.2.1
同样,对于易退化的土壤,使用试验填料和方法规范可能会有所帮助。使用替换技术是不正确的。
5.3.3
间隙分级-
差距-
级配土壤(包含许多大颗粒和有限小颗粒的土壤)是一个问题,因为压实土壤的空隙比通常情况下更大。为了处理这些大空隙,通常必须使用工程判断修改标准试验方法(实验室或现场)。
注4:
本标准产生的结果的质量取决于执行该标准的人员的能力,以及所用设备和设施的适用性。符合实践标准的机构
D3740
通常认为能够胜任和客观的测试/采样/检查等。本标准的用户应注意遵守惯例
D3740
本身并不能保证可靠的结果。
可靠的结果取决于许多因素;实践
D3740
提供了一种评估其中一些因素的方法。
1.1
These test methods cover laboratory compaction methods used to determine the relationship between molding water content and dry unit weight of soils (compaction curve) compacted in a 4 or 6-in. (101.6 or 152.4-mm) diameter mold with a 5.50-lbf (24.5-N) rammer dropped from a height of 12.0 in. (305 mm) producing a compactive effort of 12 400 ft-lbf/ft
3
(600 kN-m/m
3
).
Note 1:
The equipment and procedures are similar as those proposed by R. R. Proctor (
Engineering News Record
—September 7, 1933) with this one major exception: his rammer blows were applied as “12 inch firm strokes” instead of free fall, producing variable compactive effort depending on the operator, but probably in the range 15 000 to 25 000 ft-lbf/ft
3
(700 to 1200 kN-m/m
3
). The standard effort test (see
3.1.4
) is sometimes referred to as the Proctor Test.
1.1.1
Soils and soil-aggregate mixtures are to be regarded as natural occurring fine- or coarse-grained soils, or composites or mixtures of natural soils, or mixtures of natural and processed soils or aggregates such as gravel or crushed rock. Hereafter referred to as either soil or material.
1.2
These test methods apply only to soils (materials) that have 30 % or less by mass of particles retained on the
3
/
4
-in. (19.0-mm) sieve and have not been previously compacted in the laboratory; that is, do not reuse compacted soil.
1.2.1
For relationships between unit weights and molding water contents of soils with 30 % or less by mass of material retained on the
3
/
4
-in. (19.0-mm) sieve to unit weights and molding water contents of the fraction passing
3
/
4
-in. (19.0-mm) sieve, see Practice
D4718/D4718M
.
1.3
Three alternative methods are provided. The method used shall be as indicated in the specification for the material being tested. If no method is specified, the choice should be based on the material gradation.
1.3.1
Method A:
1.3.1.1
Mold—
4-in. (101.6-mm) diameter.
1.3.1.2
Material—
Passing No. 4 (4.75-mm) sieve.
1.3.1.3
Layers—
Three.
1.3.1.4
Blows per Layer—
25.
1.3.1.5
Usage—
May be used if 25 % or less (see
1.4
) by mass of the material is retained on the No. 4 (4.75-mm) sieve.
1.3.1.6
Other Usage—
If this gradation requirement cannot be met, then Method C may be used.
1.3.2
Method B:
1.3.2.1
Mold—
4-in. (101.6-mm) diameter.
1.3.2.2
Material—
Passing
3
/
8
-in. (9.5-mm) sieve.
1.3.2.3
Layers—
Three.
1.3.2.4
Blows per Layer—
25.
1.3.2.5
Usage—
May be used if 25 % or less (see
1.4
) by mass of the material is retained on the
3
/
8
-in. (9.5-mm) sieve.
1.3.2.6
Other Usage—
If this gradation requirement cannot be met, then Method C may be used.
1.3.3
Method C:
1.3.3.1
Mold—
6-in. (152.4-mm) diameter.
1.3.3.2
Material—
Passing
3
/
4
-in. (19.0-mm) sieve.
1.3.3.3
Layers—
Three.
1.3.3.4
Blows per Layer—
56.
1.3.3.5
Usage—
May be used if 30 % or less (see
1.4
) by mass of the material is retained on the
3
/
4
-in. (19.0-mm) sieve.
1.3.4
The 6-in. (152.4-mm) diameter mold shall not be used with Method A or B.
Note 2:
Results have been found to vary slightly when a material is tested at the same compactive effort in different size molds, with the smaller mold size typically yielding larger values of density/unit weight (
1
, pp. 21+).
2
1.4
If the test specimen contains more than 5 % by mass of oversize fraction (coarse fraction) and the material will not be included in the test, corrections must be made to the unit mass and molding water content of the specimen or to the appropriate field-in-place density test specimen using Practice
D4718/D4718M
.
1.5
This test method will generally produce a well-defined maximum dry unit weight for non-free draining soils. If this test method is used for free-draining soils the maximum unit weight may not be well defined, and can be less than obtained using Test Methods
D4253
.
1.6
All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice
D6026
, unless superseded by this standard.
1.6.1
For purposes of comparing measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.
1.6.2
The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.
1.7
The values in inch-pound units are to be regarded as the standard. The values stated in SI units are provided for information only, except for units of mass. The units for mass are given in SI units only, g or kg.
1.7.1
It is common practice in the engineering profession to concurrently use pounds to represent both a unit of mass (lbm) and a force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. This standard has been written using the gravitational system of units when dealing with the inch-pound system. In this system, the pound (lbf) represents a unit of force (weight). However, the use of balances or scales recording pounds of mass (lbm) or the recording of density in lbm/ft
3
shall not be regarded as a nonconformance with this standard.
1.8
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.9
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
Soil placed as engineering fill (embankments, foundation pads, road bases) is compacted to a dense state to obtain satisfactory engineering properties such as, shear strength, compressibility, or permeability. In addition, foundation soils are often compacted to improve their engineering properties. Laboratory compaction tests provide the basis for determining the percent compaction and molding water content needed to achieve the required engineering properties, and for controlling construction to assure that the required compaction and water contents are achieved.
5.2
During design of an engineered fill, shear, consolidation, permeability, or other tests require preparation of test specimens by compacting at some molding water content to some unit weight. It is common practice to first determine the optimum water content (
w
opt
) and maximum dry unit weight (γ
d,max
) by means of a compaction test. Test specimens are compacted at a selected molding water content (
w
), either wet or dry of optimum (
w
opt
) or at optimum (
w
opt
), and at a selected dry unit weight related to a percentage of maximum dry unit weight (γ
d,max
). The selection of molding water content (
w
), either wet or dry of optimum (
w
opt
) or at optimum (
w
opt
) and the dry unit weight (γ
d,max
) may be based on past experience, or a range of values may be investigated to determine the necessary percent of compaction.
5.3
Experience indicates that the methods outlined in
5.2
or the construction control aspects discussed in
5.1
are extremely difficult to implement or yield erroneous results when dealing with certain soils.
5.3.1 –
5.3.3
describe typical problem soils, the problems encountered when dealing with such soils and possible solutions for these problems.
5.3.1
Oversize Fraction—
Soils containing more than 30 % oversize fraction (material retained on the
3
/
4
-in. (19-mm) sieve) are a problem. For such soils, there is no ASTM test method to control their compaction and very few laboratories are equipped to determine the laboratory maximum unit weight (density) of such soils (USDI Bureau of Reclamation, Denver, CO and U.S. Army Corps of Engineers, Vicksburg, MS). Although Test Methods
D4914/D4914M
and
D5030/D5030M
determine the “field” dry unit weight of such soils, they are difficult and expensive to perform.
5.3.1.1
One method to design and control the compaction of such soils is to use a test fill to determine the required degree of compaction and the method to obtain that compaction, followed by use of a method specification to control the compaction. Components of a method specification typically contain the type and size of compaction equipment to be used, the lift thickness, acceptable range in molding water content, and the number of passes.
Note 3:
Success in executing the compaction control of an earthwork project, especially when a method specification is used, is highly dependent upon the quality and experience of the contractor and inspector.
5.3.1.2
Another method is to apply the use of density correction factors developed by the USDI Bureau of Reclamation
(
2
,
3
)
and U.S. Corps of Engineers
(
4
)
. These correction factors may be applied for soils containing up to about 50 to 70 % oversize fraction. Each agency uses a different term for these density correction factors. The USDI Bureau of Reclamation uses
D
ratio (or
D
–VALUE), while the U.S. Corps of Engineers uses Density Interference Coefficient (
I
c
).
5.3.1.3
The use of the replacement technique (Test Method
D698
–78, Method D), in which the oversize fraction is replaced with a finer fraction, is inappropriate to determine the maximum dry unit weight, γ
d,max
, of soils containing oversize fractions
(
4
)
.
5.3.2
Degradation—
Soils containing particles that degrade during compaction are a problem, especially when more degradation occurs during laboratory compaction than field compaction, as is typical. Degradation typically occurs during the compaction of a granular-residual soil or aggregate. When degradation occurs, the maximum dry-unit weight increases (
1
, p. 73) so that the laboratory maximum value is not representative of field conditions. Often, in these cases, the maximum dry unit weight is impossible to achieve in the field.
5.3.2.1
Again, for soils subject to degradation, the use of test fills and method specifications may help. Use of replacement techniques is not correct.
5.3.3
Gap Graded—
Gap-graded soils (soils containing many large particles with limited small particles) are a problem because the compacted soil will have larger voids than usual. To handle these large voids, standard test methods (laboratory or field) typically have to be modified using engineering judgement.
Note 4:
The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice
D3740
are generally considered capable of competent and objective testing/sampling/inspection, and the like. Users of this standard are cautioned that compliance with Practice
D3740
does not in itself assure reliable results. Reliable results depend on many factors; Practice
D3740
provides a means of evaluating some of those factors.