首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2927-23
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Determination of Trace Elements in Soda-Lime Glass Samples Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Forensic Comparisons 法医学比较用激光烧蚀电感耦合等离子体质谱法测定钠钙玻璃样品中微量元素的标准试验方法
发布日期: 2023-11-15
1.1 本试验方法包括以下十七种元素的定量元素分析程序:锂(Li)、镁(Mg)、铝(Al)、钾(K)、钙(Ca)、铁(Fe)、钛(Ti)、锰(Mn)、铷(Rb)、锶(Sr)、锆(Zr)、钡(Ba)、镧(La)、铈(Ce)、钕(Nd),通过使用激光烧蚀电感耦合等离子体质谱法(LA-ICP-MS)对玻璃碎片进行法医学比较,测定了铪(Hf)和铅(Pb)。这些元素在不同来源的钠钙玻璃之间提供最佳区分的潜力已在其他地方发表( 1- 5. ). 2. 硅(Si)也被监测以用作归一化标准。 可以根据需要添加额外的元素,例如,锡(Sn)可以用于监测浮法玻璃碎片的取向。 1.2 该方法仅消耗约0.4 µg至3 µg玻璃,适用于全厚度样品以及小至0.1 mm乘0.1的不规则形状碎片的分析 毫米乘以0.2 毫米( 6. )在尺寸上。上述元素的浓度范围从百万分之低(µgg -1 )钠钙玻璃是法医案件中最常见的类型。本标准方法可用于其他玻璃类型的定量分析;然而,可能需要对参考标准眼镜和元素菜单进行一些修改。 1.3 本标准旨在供受过必要正规教育和特定学科培训的合格法医学从业者使用(见实践 E2917 ),并表现出执行法医案件工作的熟练程度。 1.4 以国际单位制表示的数值应视为标准。本标准不包括其他计量单位。 1.5 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.6 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 5.1 该试验方法可用于测定约0.1范围内的元素浓度 µgg -1 至10 钠钙玻璃样品中的百分比(%)(见表X1.1)( 7和 8. ).标准测试方法有助于实验室之间的数据交换以及玻璃数据库的创建和使用。 5.2 玻璃中元素浓度的测定在玻璃碎片的法医学比较中提供了很高的鉴别价值。 5.3 这种测试方法对样品的破坏最小。显微镜下50个弹坑 µm至100µm直径乘以80 µm至150 分析后,玻璃碎片中留下了µm深。每次重复去除的质量约为0。 4. µg至3 µg( 6. ). 5.4 应使用适当的取样技术,在微观尺度上说明材料的自然不均匀性。 5.5 该方法的精度、偏差和检测限值(对于测量的每个元素)应在方法验证期间确定。用于比较的任何浓度值的测量不确定度应与浓度一起记录。 5.6 玻璃的酸消化,然后电感耦合等离子体光学发射光谱法(ICP-OES)或电感耦合等离子体质谱法(ICP-MS)也可用于玻璃的微量元素分析,并提供类似的检测水平和定量分析能力。 然而,这些方法具有破坏性,需要更大的样本量和更多的样本制备(试验方法 E2330 ). 5.7 微X射线荧光(µ-XRF)使用的样品尺寸与LA-ICP-MS所用的样品尺寸相当,其优点是对样品无损。µ-XRF的一些缺点包括灵敏度和精度较低以及分析时间较长(测试方法 E2926 ). 5.8 具有能量分散光谱法的扫描电子显微镜(SEM-EDS)也可用于元素分析,但由于在痕量浓度水平下对玻璃中存在的较高原子序数元素的检测限较差,因此其在法医玻璃源鉴别中的用途有限。然而,有时可以区分具有相似RI和密度的来源。
1.1 This test method covers a procedure for the quantitative elemental analysis of the following seventeen elements: lithium (Li), magnesium (Mg), aluminum (Al), potassium (K), calcium (Ca), iron (Fe), titanium (Ti), manganese (Mn), rubidium (Rb), strontium (Sr), zirconium (Zr), barium (Ba), lanthanum (La), cerium (Ce), neodymium (Nd), hafnium (Hf) and lead (Pb) through the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the forensic comparison of glass fragments. The potential of these elements to provide the best discrimination among different sources of soda-lime glasses has been published elsewhere ( 1- 5 ). 2 Silicon (Si) is also monitored for use as a normalization standard. Additional elements may be added as needed, for example, tin (Sn) can be used to monitor the orientation of float glass fragments. 1.2 The method only consumes approximately 0.4 µg to 3 µg of glass per replicate and is suitable for the analysis of full thickness samples as well as irregularly shaped fragments as small as 0.1 mm by 0.1 mm by 0.2 mm ( 6 ) in dimension. The concentrations of the elements listed above range from the low parts per million (µgg -1 ) to percent (%) levels in soda-lime glass, the most common type encountered in forensic cases. This standard method can be applied for the quantitative analysis of other glass types; however, some modifications in the reference standard glasses and the element menu may be required. 1.3 This standard is intended for use by competent forensic science practitioners with the requisite formal education, discipline-specific training (see Practice E2917 ), and demonstrated proficiency to perform forensic casework. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method is useful for the determination of elemental concentrations in the range of approximately 0.1 µgg -1 to 10 percent (%) (See Table X1.1) in soda-lime glass samples ( 7 and 8 ). A standard test method can aid in the interchange of data between laboratories and in the creation and use of glass databases. 5.2 The determination of elemental concentrations in glass provides high discriminating value in the forensic comparison of glass fragments. 5.3 This test method produces minimal destruction of the sample. Microscopic craters of 50 µm to 100 µm in diameter by 80 µm to 150 µm deep are left in the glass fragment after analysis. The mass removed per replicate is approximately 0.4 µg to 3 µg ( 6 ). 5.4 Appropriate sampling techniques shall be used to account for natural heterogeneity of the materials at a microscopic scale. 5.5 The precision, bias, and limits of detection of the method (for each element measured) shall be established during validation of the method. The measurement uncertainty of any concentration value used for a comparison shall be recorded with the concentration. 5.6 Acid digestion of glass followed by either Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) can also be used for trace elemental analysis of glass, and offer similar detection levels and the ability for quantitative analysis. However, these methods are destructive, and require larger sample sizes and more sample preparation (Test Method E2330 ). 5.7 Micro X-Ray Fluorescence (µ-XRF) uses comparable sample sizes to those used for LA-ICP-MS with the advantage of being non-destructive of the sample. Some of the drawbacks of µ-XRF include lower sensitivity and precision, and longer analysis time (Test Method E2926 ). 5.8 Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) is also available for elemental analysis, but it is of limited use for forensic glass source discrimination due to poor detection limits for higher atomic number elements present in glass at trace concentration levels. However, distinguishing between sources having similar RIs and densities is sometimes possible.
分类信息
发布单位或类别: 美国-美国材料与试验协会
关联关系
研制信息
归口单位: E30.01
相似标准/计划/法规
现行
ASTM C1301-22
Standard Test Method for Major and Trace Elements in Limestone and Lime by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP) and Atomic Absorption (AA)
用电感耦合等离子体原子发射光谱法(ICP)和原子吸收法(AA)测定石灰石和石灰中主要和微量元素的标准试验方法
2022-12-01
现行
ASTM D8351-22
Standard Test Method for Determination of Trace Elements in Biodiesel and Biodiesel Blends by Microwave Plasma Atomic Emission Spectrometry (MP-AES)
用微波等离子体原子发射光谱法(MP-AES)测定生物柴油和生物柴油混合物中微量元素的标准试验方法
2022-05-01
现行
ASTM D7111-16(2021)
Standard Test Method for Determination of Trace Elements in Middle Distillate Fuels by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)
用电感耦合等离子体原子发射光谱法(ICP-AES)测定中间馏分燃料中微量元素的标准试验方法
2021-07-01
现行
NB/SH/T 0892-2015
中间馏分燃料中痕量元素的测定 电感耦合等离子体原子发射光谱法
Standard test method for determination of trace elements in middle distillate fuels by inductively coupled plasma atomic emission spectrometry (ICP-AES)
2015-10-27
现行
ASTM D6357-21b
Standard Test Methods for Determination of Trace Elements in Coal, Coke, and Combustion Residues from Coal Utilization Processes by Inductively Coupled Plasma Atomic Emission Spectrometry, Inductively Coupled Plasma Mass Spectrometry, and Graphite Furnace Atomic Absorption Spectrometry
用电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法和石墨炉原子吸收光谱法测定煤炭利用过程中煤炭、焦炭和燃烧残渣中微量元素的标准试验方法
2021-12-01