首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E705-18
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237 通过氪-237的放射活性测定反应速率的标准试验方法
发布日期: 2018-12-01
1.1 本试验方法包括通过分析裂变反应的裂变产物(F.P.)来测量反应速率的程序 237 Np(n,f)f.P。 1.2 该反应可用于测量能量约为0.7至6MeV的中子,以及长达90年的辐照时间,前提是实际中描述的分析方法 E261 遵循。如果在超过90年的辐照期后对剂量计进行分析,则在没有先前撤回的剂量计的支持数据的情况下,不应依赖在辐照结束前超过90年的辐照期内推断出的关于注量的信息。 1.3 实践中定义的等效裂变中子注量率 E261 可以确定。 1.4 实践中参考了其他快中子探测器的详细程序 E261 . 1.5 以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。 1.6 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 参考实践 E261 关于用裂变探测器测定快中子注量率的一般性讨论。 5.2 237 Np可用作金属箔、金属丝或氧化物粉末。有关更多信息,请参阅指南 E844 . 通常将其封装在适当的容器中,以防止材料的损失和污染 237 Np及其裂变产物。 4. 5.3 可以分析一种或多种裂变产物。相关裂变产物的相关数据见 表1 5. 和 表2 . (A) 括号中的光面数是最后一位数字中正负不确定性的大小。 (B) 具有 137m Ba(2.552分钟)处于平衡状态。 (C) 女儿的概率 140 洛杉矶衰变。 (D) 具有 140 La(1.67850 d)处于瞬态平衡。 (E) 半衰期、伽马能量和伽马发射概率的主要参考是Ref ( 1. )当数据可用时。注:本参考是指在设定推荐裂变产额时(即截至2009年)推荐的BIPM数据,而不是2016年发布的最新第8卷数据。 (A) 杰夫-3.1/3.1.1放射性衰变数据和裂变产额子库,杰夫报告20,经合组织2009,核能机构 ( 2. ). (B) 所有产量数据以百分比形式给出;RC表示累积收益率;RI代表独立收益率。 (C) 中子能量代表一个通用的“快中子”谱,并已在JEFF 3中进行了表征。 1.1裂变产额库,平均中子能量为0.4 MeV。 5.3.1 137 Cs公司- 137m Ba经常用于长时间辐照。放射性产品 134 Cs和 136 Cs可能存在,这可能会干扰0.661657 MeV的计数 137 Cs公司- 137m Ba伽马射线(见试验方法 E320 ). 5.3.2 140 文学学士- 140 对于短辐照,经常选择La(见试验方法 E393 ). 5.3.3 95 锆可以在化学分离后直接计数,也可以与其子体一起计数 95 Nb,使用高分辨率伽马探测器系统。 5.3.4 144 Ce是一种高产量裂变产物,适用于2到3年的辐照。 5.4 有必要围绕 237 带有热中子吸收器的Np监测器,以最大限度地减少核反应堆中微量裂变核素产生的裂变产物 237 Np目标和来自 238 Np和 238 Pu来自(n,γ)反应 237 Np材料。含量测定 238 Pu和 239 当预期有重大贡献时,建议使用钚浓度。 5.4.1 轻水反应堆中子活化产物生产裂变产物 238 Np和 238 Pu被计算为无关紧要(1.2 %), 相比之下 237 Np(n,f),在快中子下辐照12年( E >1 MeV)1的注量率 × 10 11 厘米 −2. ·s −1. ,前提是 237 Np被热中子屏蔽(见图。 第2页,共页 E844 ). 5.4.2 光核反应(即,(γ,f)反应)产生的裂变产物,而在附近可忽略不计- 动力和研究堆芯,可用于深水渗透 ( 3. ). 5.5 这种剂量学反应在反应堆回顾剂量学领域很重要 ( 4. , 5. ) . 中子注量测量值与 237 Np裂变和 54 Fe(n,p) 54 锰反应已得到证实 ( 6. , 7. ). 反应 237 Np(n,f)f.P.是有用的,因为它比大多数阈值探测器对更大范围的中子能量作出响应。 5.5.1 图1 显示了该剂量测定反应的能量相关截面。该图表明,虽然严格来说它不是阈值探测器,但由于其在大于0.1 MeV中子能量范围内的灵敏度,它可以在快中子区作为灵敏度良好的探测器。 在快速裂变中 252 Cf自发裂变基准场,~ 1 % 的 237 Np裂变剂量计的响应来自能量低于0.1 MeV的中子。在快速爆发的空腔中 235 U反应堆,约为 237 Np辐射剂量计的响应来自能量低于0.1 MeV的中子。在慢化良好的池式研究反应堆的空腔中,约50%的裂变反应来自 237 Np(n,f)反应的能量小于0.1MeV。这种低中子能量灵敏度的重要性应根据应用情况确定。 5.6 这个 237 表中给出了几个基准中子场中Np裂变中子谱的平均截面 实践之三 E261 . 指南中给出了最新推荐横截面的来源 E1018 . 在这种情况下 237 Np(n,f)f.P.反应,建议的横截面源是俄罗斯反应堆剂量测定文件RRDF ( 8. ) . 对于高达20 MeV的能量,该建议横截面与最新的国际原子能机构(IAEA)国际反应堆剂量测定和聚变文件IRDFF-1.05中的内容相同 ( 9 ) . 图1 显示了快中子反应的推荐横截面与中子能量的关系图 237 Np(n,f)f.P。 图1 RRDF/IRDFF-1.05横截面与能量的关系 237 Np(n,f)f.P.反应
1.1 This test method covers procedures for measuring reaction rates by assaying a fission product (F.P.) from the fission reaction 237 Np(n,f)F.P. 1.2 The reaction is useful for measuring neutrons with energies from approximately 0.7 to 6 MeV and for irradiation times up to 90 years, provided that the analysis methods described in Practice E261 are followed. If dosimeters are analyzed after irradiation periods longer than 90 years, the information inferred about the fluence during irradiation periods more than 90 years before the end of the irradiation should not be relied upon without supporting data from dosimeters withdrawn earlier. 1.3 Equivalent fission neutron fluence rates as defined in Practice E261 can be determined. 1.4 Detailed procedures for other fast-neutron detectors are referenced in Practice E261 . 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Refer to Practice E261 for a general discussion of the determination of fast-neutron fluence rate with fission detectors. 5.2 237 Np is available as metal foil, wire, or oxide powder. For further information, see Guide E844 . It is usually encapsulated in a suitable container to prevent loss of, and contamination by, the 237 Np and its fission products. 4 5.3 One or more fission products can be assayed. Pertinent data for relevant fission products are given in Table 1 5 and Table 2 . (A) The lightface numbers in parentheses are the magnitude of plus or minus uncertainties in the last digit(s) listed. (B) With 137m Ba (2.552 min) in equilibrium. (C) Probability of daughter 140 La decay. (D) With 140 La (1.67850 d) in transient equilibrium. (E) Primary reference for half-life, gamma energy, and gamma emission probability is Ref ( 1 ) when data is available. Note this reference is to the BIPM data that was recommended at the time of the recommended fission yields were set, that is, as of 2009, and not to the latest Vol 8 data that was published in 2016. (A) The JEFF-3.1/3.1.1 radioactive decay data and fission yields sub-libraries, JEFF Report 20, OECD 2009, Nuclear Energy Agency ( 2 ). (B) All yield data given as a %; RC represents a cumulative yield; RI represents an independent yield. (C) The neutron energy represents a generic “fast neutron” spectrum and has been characterized in the JEFF 3.1.1 fission yield library as having an average neutron energy of 0.4 MeV. 5.3.1 137 Cs- 137m Ba is chosen frequently for long irradiations. Radioactive products 134 Cs and 136 Cs may be present, which can interfere with the counting of the 0.661657 MeV 137 Cs- 137m Ba gamma ray (see Test Methods E320 ). 5.3.2 140 Ba- 140 La is chosen frequently for short irradiations (see Test Method E393 ). 5.3.3 95 Zr can be counted directly, following chemical separation, or with its daughter 95 Nb, using a high-resolution gamma detector system. 5.3.4 144 Ce is a high-yield fission product applicable to 2- to 3-year irradiations. 5.4 It is necessary to surround the 237 Np monitor with a thermal neutron absorber to minimize fission product production from trace quantities of fissionable nuclides in the 237 Np target and from 238 Np and 238 Pu from (n,γ) reactions in the 237 Np material. Assay of 238 Pu and 239 Pu concentration is recommended when a significant contribution is expected. 5.4.1 Fission product production in a light-water reactor by neutron activation products 238 Np and 238 Pu has been calculated to be insignificant (1.2 %), compared to that from 237 Np(n,f), for an irradiation period of 12 years at a fast neutron ( E > 1 MeV) fluence rate of 1 × 10 11 cm −2 ·s −1 , provided the 237 Np is shielded from thermal neutrons (see Fig. 2 of Guide E844 ). 5.4.2 Fission product production from photonuclear reactions, that is, (γ,f) reactions, while negligible near-power and research reactor cores, can be large for deep-water penetrations ( 3 ). 5.5 This dosimetry reaction is important in the area of reactor retrospective dosimetry ( 4 , 5 ) . Good agreement between neutron fluence measured by 237 Np fission and the 54 Fe(n,p) 54 Mn reaction has been demonstrated ( 6 , 7 ). The reaction 237 Np(n,f) F.P. is useful since it is responsive to a broader range of neutron energies than most threshold detectors. 5.5.1 Fig. 1 shows the energy-dependent cross section for this dosimetry reaction. The figure shows that, while it is not strictly a threshold detector, because of its sensitivity in the greater than 0.1 MeV neutron energy range it can function as a detector with good sensitivity in the fast neutron region. In the fast fission 252 Cf spontaneous fission benchmark field, ~1 % of the 237 Np fission dosimeter response comes from neutrons with an energy less than 0.1 MeV. In the cavity of a fast burst 235 U reactor, ~5 % of the 237 Np ifssion dosimeter response comes from neutrons with an energy less than 0.1 MeV. In the cavity of a well-moderated pool-type research reactor ~50 % of the fission response from the 237 Np(n,f) reaction comes from energies less than 0.1 MeV. The importance of this low neutron energy sensitivity should be determined based on the aplication. 5.6 The 237 Np fission neutron spectrum-averaged cross section in several benchmark neutron fields are given in Table 3 of Practice E261 . Sources for the latest recommended cross sections are given in Guide E1018 . In the case of the 237 Np(n,f)F.P. reaction, the recommended cross section source is the Russian Reactor Dosimetry File, RRDF ( 8 ) . This recommended cross section is identical, for energies up to 20 MeV, to what is found in the latest International Atomic Energy (IAEA) International Reactor Dosimetry and Fusion File, IRDFF-1.05 ( 9 ) . Fig. 1 shows a plot of the recommended cross section versus neutron energy for the fast-neutron reaction 237 Np(n,f)F.P. FIG. 1 RRDF/IRDFF-1.05 Cross Section Versus Energy for the 237 Np(n,f)F.P. Reaction
分类信息
关联关系
研制信息
归口单位: E10.05
相似标准/计划/法规
现行
ASTM E704-19
Standard Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238
铀-238放射活性测定反应速率的标准试验方法
2019-10-01
现行
ASTM E526-22
Standard Test Method for Measuring Fast-Neutron Reaction Rates By Radioactivation of Titanium
用钛的放射性活化测量快中子反应速率的标准试验方法
2022-07-01
现行
ASTM E263-18
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron
用铁的放射性测量快中子反应速率的标准试验方法
2018-12-01
现行
ASTM E264-19
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel
用镍的放射性测量快中子反应速率的标准试验方法
2019-04-01
现行
ASTM E1297-18
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium
通过铌放射活性测定快中子反应速率的标准试验方法
2018-06-01
现行
ASTM E266-23
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum
用铝的放射性测定快中子反应率的标准试验方法
2023-06-01
现行
ASTM E523-21e1
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper
通过铜的放射性测量快中子反应速率的标准测试方法
2021-04-01
现行
ASTM E265-15(2020)
Standard Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32
通过硫-32的放射性测量反应速率和快中子流量的标准测试方法
2020-07-01
现行
ASTM E262-17(2024)e1
Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques
用放射性技术测定热中子反应率和热中子通量率的标准试验方法
2024-05-01
现行
ASTM E393-19
Standard Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters
通过从裂变剂量计分析钡-140测量反应速率的标准测试方法
2019-11-01