首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2994-21
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Analysis of Titanium and Titanium Alloys by Spark Atomic Emission Spectrometry and Glow Discharge Atomic Emission Spectrometry (Performance-Based Method) 用火花原子发射光谱法和辉光放电原子发射光谱法分析钛和钛合金的标准试验方法(基于性能的方法)
发布日期: 2021-12-01
1.1 本试验方法描述了通过火花原子发射光谱法(火花AES)和辉光放电原子发射光谱法(GD-AES)对钛及其合金的分析。待分析的钛试样可以是圆盘、铸件、箔片、薄板、板材、挤压件或一些其他锻造形式或形状。本试验方法的spark AES范围内涵盖的元素和范围如下所示。 要素 测试质量分数范围(%) 铝 0.008至7.0 铬 0.006至0.1 铜 0.014至0.1 铁 0.043至0.3 锰 0.005至0.1 钼 0.014至0.1 镍 0.006至0.1 硅 0.018至0.1 锡 0.02至0.1 钒 0.015至5.0 锆 0.013至0.1 1.1.1 元素氧、氮、碳、铌、硼、钇、钯和钌包含在ILS中,但数据不包含所需的六个实验室。精度表仅供参考。 1.2 本试验方法GD-AES范围内涵盖的元素和范围如下所示。 要素 测试质量分数范围(%) 铝 0.02至7.0 碳 0.02至0.1 铬 0.006至0.1 铜 0.028至0.1 铁 0.09至0.3 钼 0.016至0.1 镍 0.006至0.1 硅 0.018至0.1 锡 0.022至0.1 钒 0.054至5.0 锆 0.026至0.1 1.2.1 元素硼、锰、氧、氮、铌、钇、钯和钌包含在ILS中,但数据不包含所需的六个实验室。精度表仅供参考。 1.3 上述范围表中给出的元素和质量分数是通过实验室间研究验证的范围。然而,众所周知,本标准中使用的技术允许根据单个仪器能力、可用参考材料、实验室能力和所用特定元素波长的光谱特征,将所列元素的可用范围扩大或缩小。 也可以分析表中未列出的元素 1.1 或 1.2 并且仍然符合该标准测试方法。当扩展分析范围或分析第节中未报告的元素时,实验室必须提供足够的方法验证证据 18 (精度和偏差),如指南中所述 E2857 . 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。第节给出了具体的安全隐患说明 9 . 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 本钛合金化学分析试验方法主要用于测试材料是否符合规范的成分要求,如ASTM B10委员会管辖的成分要求。它也可用于测试是否符合与测试方法兼容的其他规范。 5.2 这是一种基于性能的测试方法,更依赖于测试结果的证明质量,而不是严格遵守特定的程序步骤。假设所有使用该测试方法的人都是经过培训的分析员,能够熟练、安全地执行常见的实验室程序,并且工作将在配备适当的实验室中进行。 5.3 预计使用该测试方法的实验室将编制自己的工作说明书。这些工作说明将包括特定实验室的详细操作说明、使用的特定参考材料和性能验收标准。
1.1 This test method describes the analysis of titanium and its alloys by spark atomic emission spectrometry (Spark-AES) and glow discharge atomic emission spectrometry (GD-AES). The titanium specimen to be analyzed may be in the form of a disk, casting, foil, sheet, plate, extrusion, or some other wrought form or shape. The elements and ranges covered in the scope by spark-AES of this test method are listed below. Element Tested Mass Fraction Range (%) Aluminum 0.008 to 7.0 Chromium 0.006 to 0.1 Copper 0.014 to 0.1 Iron 0.043 to 0.3 Manganese 0.005 to 0.1 Molybdenum 0.014 to 0.1 Nickel 0.006 to 0.1 Silicon 0.018 to 0.1 Tin 0.02 to 0.1 Vanadium 0.015 to 5.0 Zirconium 0.013 to 0.1 1.1.1 The elements oxygen, nitrogen, carbon, niobium, boron, yttrium, palladium, and ruthenium, were included in the ILS but the data did not contain the required six laboratories. Precision tables were provided for informational use only. 1.2 The elements and ranges covered in the scope by GD-AES of this test method are listed below. Element Tested Mass Fraction Range (%) Aluminum 0.02 to 7.0 Carbon 0.02 to 0.1 Chromium 0.006 to 0.1 Copper 0.028 to 0.1 Iron 0.09 to 0.3 Molybdenum 0.016 to 0.1 Nickel 0.006 to 0.1 Silicon 0.018 to 0.1 Tin 0.022 to 0.1 Vanadium 0.054 to 5.0 Zirconium 0.026 to 0.1 1.2.1 The elements boron, manganese, oxygen, nitrogen, niobium, yttrium, palladium, and ruthenium were included in the ILS, but the data did not contain the required six laboratories. Precision tables were provided for informational use only. 1.3 The elements and mass fractions given in the above scope tables are the ranges validated through the interlaboratory study. However, it is known that the techniques used in this standard allow the useable range, for the elements listed, to be extended higher or lower based on individual instrument capability, available reference materials, laboratory capabilities, and the spectral characteristics of the specific element wavelength being used. It is also acceptable to analyze elements not listed in 1.1 or 1.2 and still meet compliance to this standard test method. Laboratories must provide sufficient evidence of method validation when extending the analytical range or when analyzing elements not reported in Section 18 (Precision and Bias), as described in Guide E2857 . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety hazard statements are given in Section 9 . 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method for the chemical analysis of titanium alloys is primarily intended to test material for compliance to compositional requirements of specifications such as those under jurisdiction of ASTM Committee B10. It may also be used to test compliance with other specifications that are compatible with the test method. 5.2 This is a performance-based test method that relies more on the demonstrated quality of the test result than on strict adherence to specific procedural steps. It is assumed that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely, and that the work will be performed in a properly equipped laboratory. 5.3 It is expected that laboratories using this test method will prepare their own work instructions. These work instructions will include detailed operating instructions for the specific laboratory, the specific reference materials employed, and performance acceptance criteria.
分类信息
关联关系
研制信息
归口单位: E01.06
相似标准/计划/法规
现行
BS EN 3976-2006
Aerospace series. Titanium and titanium alloys. Test method. Chemical analysis for the determination of hydrogen content
航空航天系列 钛和钛合金 测试方法 测定氢含量的化学分析
2007-01-31
现行
ASTM F2004-24
Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis
用热分析法测定镍钛合金转变温度的标准试验方法
2024-04-15
现行
YY/T 0641-2008
热分析法测量NiTi合金相变温度的标准方法
Standard test method for transformation temperature of nickel—Titanium alloys by thermal analysis
2008-04-25
现行
ASTM E1409-13(2021)
Standard Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion
用惰性气体熔化法测定钛和钛合金中氧和氮的标准试验方法
2021-12-01
现行
ASTM D1394-76(2020)
Standard Test Methods for Chemical Analysis of White Titanium Pigments
白色钛颜料化学分析的标准测试方法
2020-06-01
现行
ASTM E539-19
Standard Test Method for Analysis of Titanium Alloys by Wavelength Dispersive X-Ray Fluorescence Spectrometry
用波长色散X射线荧光光谱法分析钛合金的标准试验方法
2019-03-01
现行
ASTM E2371-21a
Standard Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-Based Test Methodology)
用直流等离子体和电感耦合等离子体原子发射光谱法分析钛和钛合金的标准试验方法(基于性能的试验方法)
2021-12-01
现行
ASTM E1938-24
Standard Test Method for Determination of Titanium in Nickel Alloys by Diantipyrylmethane Spectrophotometry
通过二苯乙烯基甲烷分光光度法测定镍合金中的钛的标准测试方法
2024-11-15
现行
DIN EN 3976
Aerospace series - Titanium and titanium alloys - Test method - Chemical analysis for the determination of hydrogen content; German and English version EN 3976:2006
航空航天系列.钛和钛合金.试验方法.测定氢含量的化学分析;德语和英语版本EN 3976:2006
2007-04-01
现行
ASTM F945-22
Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials
航空发动机清洁材料对钛合金应力腐蚀的试验方法
2022-09-01
现行
YY/T 1823-2022
心血管植入物 镍钛合金镍离子释放试验方法
Cardiovascular implants—Standard test method for nickel ion release of nickel-titanium alloy
2022-05-18
现行
ASTM F2082/F2082M-23
Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery
用弯曲和自由恢复法测定镍钛形状记忆合金转变温度的标准试验方法
2023-10-15
现行
YY/T 1771-2021
弯曲-自由恢复法测试镍钛形状记忆合金相变温度
Standard test method for determination of transformation temperature of nickel-titanium shape memory alloys by bend and free recovery
2021-03-09