首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 WRC 167
到馆提醒
收藏跟踪
购买正版
Laser Welding and Cutting 激光焊接和切割
高强度低动量表面加热装置的出现对材料加工领域,尤其是熔焊领域产生了自然的影响。激光和电子束提供了精确控制能量和位置的潜在能力,这是电弧和火焰等旧光源无法接近的,而且在某些操作条件下,激光和电子束几乎不向被加工材料传递推力,这是一个重要的优势。然而,这些电源的极端强度(以单位面积的功率尺寸表示)在解决熔焊中的局部熔化问题时,既有问题,也有优势。 对于更传统的焊接热源,几乎没有任何强度过高的问题。事实上,问题通常与此相反,因为具有相对较高导热性的金属有一种趋势,即几乎以与供应相同的速度将热量从焊接区域传导出去。 从这个意义上说,术语“熔化效率”被用来表示实际用于熔化的总热量的分数,对于典型的明弧,这种熔化效率通常会下降到50%以下。熔化效率与热源强度直接相关,随着热源强度的增加,熔化效率也会增加。
The advent of high intensity low momentum surface heating devices is having a natural impact on the field of materials processing, particularly fusion welding. The laser and electron beam offer potential capability for precise control of energy and location which cannot be approached by older sources such as arcs and flames, and the fact that under certain operating conditions they transmit little or no thrust to the material being worked is an important advantage. However, the extreme intensity of these sources, expressed in dimensions of power per unit area, presents problems as well as advantages when addressed to the objective of local melting as in fusion welding. With more conventional welding heat sources, there was seldom, if ever, any question of too high an intensity. Indeed, the problem has generally been quite the reverse, in that there is a tendency for metals having relatively high thermal conductivity to conduct the heat away from the weld region almost as fast as it is supplied. In this sense, the term "melting efficiency" has been used to express the fraction of the total heat which is actually used for melting, and with a typical open arc, this melting efficiency will generally fall below 50%. Melting efficiency is directly related to the intensity of the heat source, and as the intensity increases, the melting efficiency also increases.
分类信息
发布单位或类别: 未知国家-其他未分类
关联关系
研制信息
相似标准/计划/法规
现行
MIL MIL-T-18803D Amendment 1
TORCH OUTFIT, CUTTING AND WELDING (S/S BY A-A-50582) (SUPERSEDING MIL-T-18803C)
TORCH OUTFIT CUTTING AND WELDING(S/S BY A-A-50582)(取代MIL-T-18803C)
1989-11-09
现行
SME MS930130
Current Laser-Robot Systems For Welding And Cutting
当前用于焊接和切割的激光机器人系统
1993-06-01
现行
SME AD96-149
3d Laser Cutting And Welding For Automotive Prototyping
汽车原型的三维激光切割和焊接
1996-06-01
现行
BS EN ISO 17658-2015
Welding. Imperfections in oxyfuel flame cuts, laser beam cuts and plasma cuts. Terminology
焊接 氧燃料火焰切割、激光束切割和等离子切割中的缺陷 术语
2015-04-30
现行
ISO 17658-2002
Welding — Imperfections in oxyfuel flame cuts, laser beam cuts and plasma cuts — Terminology
焊接与焊接;氧燃料火焰切割、激光束切割和等离子切割中的缺陷——术语
2002-03-28
现行
SME MS900324
Laser Cutting And Welding Systems For Jit High Volume
Jit大批量激光切割和焊接系统
1990-06-01
现行
SME MR96-288
Optimizing Cutting And Welding Processing By Controlling The Laser Beam
通过控制激光束优化切割和焊接工艺
1996-06-01
现行
AWS C7.2M-2010
Recommended Practices for Laser Beam Welding, Cutting, and Allied Processes
激光束焊接、切割和相关工艺的推荐规程
2010-06-24
现行
1A1W1S1 Archive Product 343
Recommended Practices for Laser Beam Welding, Cutting, and Allied Processes
激光束焊接、切割和相关工艺的推荐规程
2010-06-24
现行
GB/T 34380-2017
数控激光切割机
CNC laser cutting machine
2017-10-14
现行
SME MS900270
High Pressure Laser Cutting
高压激光切割
1990-06-01
现行
UNE-EN 12584-1999
IMPERFECTIONS IN OXYFUEL FLAME CUTS, LASER BEAM CUTS AND PLASMA CUTS -TERMINOLOGY.
氧燃料火焰切割、激光束切割和等离子切割中的缺陷.术语
1999-07-30
现行
QB/T 4025-2010
激光焊接夹套
Laser welding jacket
2010-04-22
现行
YY/T 0914-2015
牙科学 激光焊接
Dentistry—Laser welding
2015-03-02
现行
KS P ISO 28319
치과 ─ 레이저 용접
牙科 - 激光焊接
2017-09-29
现行
DIN EN ISO 17658
Welding - Imperfections in oxyfuel flame cuts, laser beam cuts and plasma cuts - Terminology (ISO 17658:2002); Trilingual version EN ISO 17658:2015
焊接.氧燃料火焰切割 激光束切割和等离子切割中的缺陷.术语(ISO 17658-2002);三种语言版本EN ISO 17658:2015
2015-08-01
现行
GB/T 19867.4-2008
激光焊接工艺规程
Welding procedure specification for laser beam welding
2008-03-31
现行
GB 9448-1999
焊接与切割安全
Safety in welding and cutting
1999-09-03
现行
BS EN 1011-6-2018
Welding. Recommendation for welding of metallic materials-Laser beam welding
焊接 金属材料焊接建议 激光束焊接
2018-12-12
现行
JB/T 11063-2010
激光焊接工艺指南
Recommendations for laser beam welding
2010-04-22