首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA ACE63058
到馆提醒
收藏跟踪
购买正版
Removal and Toxicity of Nanomaterials in Drinking Water 饮用水中纳米材料的去除和毒性
发布日期: 2006-06-01
尽管目前纳米材料的市场很小,而且其浓度可能不高 在环境中处于足以导致人类健康或环境问题的高度, 这一市场正在迅速增长,纳米材料正在向环境中排放 在不久的将来,随着制造成本的降低和新产品的出现,这一趋势可能会非常显著 应用程序被发现。纳米材料在细胞中的积累可能会 重大的环境和人类影响。然而,目前所知甚少 关于这些人造纳米材料在地球上的命运、运输、转化和毒性 环境。本研究项目的目标是:描述 水环境中纳米材料的基本特性; 检查 纳米材料与有毒有机污染物和病原体(病毒)之间的相互作用; 评估饮用水单元工艺对纳米材料的去除效率; 此外,使用细胞培养模型测试饮用水中纳米材料的毒性 上皮系统。这项研究考虑了物理、化学和生物因素 纳米材料命运和毒性在系统中的影响,将提供对 纳米材料存在的可能性,以及在经过处理的饮用水中引起健康问题的可能性 水 商用金属氧化物纳米颗粒(粉末或液体悬浮液)的表征 通过扫描电子显微镜或放置这些颗粒后的动态光散射 在水中表明,这些纳米材料在购买时会聚集并保留 在溶液中聚合。尝试用化学方法分解水中的纳米材料 超声波处理、pH调节、溶剂添加或表面活性剂添加对反应的影响最小 平均粒径。因此,金属氧化物纳米颗粒的聚集范围为 纳米颗粒浓度为10 mg/L时,粒径为500至10000 nm。 因此,金属氧化物纳米颗粒的命运和运输实际上可能更多地取决于 聚集动力学比离散纳米颗粒在水中的行为更重要。为了应对命运 我们团队合成了具有平均粒子数的金属氧化物 直径约为10 nm,最初未聚合,将在未来测试中使用。 已经进行了模拟饮用水处理(jar试验)的实验 混凝、絮凝、沉淀和过滤)。两种金属凝固剂(明矾、, 铁)和盐(MgCl2)被用来破坏金属氧化物的稳定性或聚集金属氧化物 纳米颗粒。实验包括钛、铁和氧化铝 纳米颗粒和镉量子点。总的来说,只有混凝和沉淀 去除40%至60%的这些纳米颗粒,并过滤(0.45µm或3µm孔径 直径)再去除50%到80%。某些初始值的10%到30% 然而,在模拟水处理试验之后,纳米颗粒仍然存在。 跨上皮电阻(TEER)测量采用 CaCO 2 BBe(人类肠道细胞)用Dulbecco改良的 添加10%胎牛血清的Eagle培养基(DMEM), 青霉素/链霉素/真菌酮和转铁蛋白。增长的广泛优化 条件已经具备。初步实验表明,减少了10到50 应用金属氧化物纳米颗粒后1小时内的TEER百分比。 细胞的光谱研究正在进行中,以确定 提尔的变化。包括57篇参考文献,见图。
Although the current market for nanomaterials is small and their concentration may not be high enough in the environment to cause human health or environmental problems, this market is increasing rapidly and the discharge of nanomaterials into the environment in the near future could be significant as manufacturing costs decrease and new applications are discovered. The accumulation of nanomaterials in cells may have significant environmental and human impacts. At present, however, very little is known about the fate, transport, transformation, and toxicity of these man-made nanomaterials in the environment. The objectives of this research project are to: characterize the fundamental properties of nanomaterials in aquatic environments; examine the interactions between nanomaterials and toxic organic pollutants and pathogens (viruses); evaluate the removal efficiency of nanomaterials by drinking water unit processes; and, test the toxicity of nanomaterials in drinking water using the cell culture model system of the epithelium. This study considers the physical, chemical, and biological implications of nanomaterial fate and toxicity in systems that will provide insight into the potential for nanomaterials to be present and to cause health concern in treated drinking water. Characterization of commercial metal oxide nanoparticles (powder or liquid suspensions) by scanning electron microscopy or by dynamic light scatter after placing these particles in water indicates that these nanomaterials are aggregated when purchased and remain aggregated in solution. Attempts to disaggregate the nanomaterials in water using sonication, pH adjustment, solvent addition, or surfactant addition had minimal effect on mean particle sizes. As a consequence, the metal oxide nanoparticle aggregates range in size from 500 to 10,000 nm in diameter at concentrations of 10 mg/L of nanoparticles. Thus fate and transport of metal oxide nanoparticles may actually depend more on aggregation kinetics than behavior of discrete nanoparticles in water. To address the fate of discrete nanoparticles our team has synthesized metal oxides with mean particle diameters of ~ 10 nm, which are not initially aggregated and will be used in future tests. Experiments have been conducted that simulate drinking water treatment (jar tests with coagulation, flocculation, sedimentation, and filtration). Both metal coagulants (alum, ferric) and salt (MgCl2) have been used to destabilize or otherwise aggregate metal oxide nanoparticles. Experiments have included titanium, iron, and aluminum oxide nanoparticles, and cadmium quantum dots. Overall, coagulation and sedimentation alone remove 40 to 60 percent of these nanoparticles, and filtration (0.45 µm or 3 µm pore diameter) removes an additional 50 to 80 percent. Ten to 30 percent of some initial nanoparticles remain, however, after this simulated water treatment test. Trans-Epithelial Electrical Resistance (TEER) measurements have been made using Caco2 BBe (human intestinal cells) grown and maintained with Dulbecco's Modified Eagle Medium (DMEM) media supplemented with 10 percent fetal bovine serum, penicillin/ streptomycin/ fungizone, and transferrin. Extensive optimization of growth conditions were undertaken. Preliminary experiments indicate a decrease of 10 to 50 percent in TEER within 1 hour after application of metal oxide nanoparticles. Spectroscopic investigations of the cells are underway to determine the mechanism for change in TEER. Includes 57 references, figure.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规
现行
AWWA CO50835
Persistant Bioaccumulative Toxicants in Drinking Water Reservoirs
饮用水库中持久性生物累积性毒物
1999-09-01
现行
AWWA JAW25789
Journal AWWA - Using Activated Carbon to Remove Toxicity from Drinking Water Containing Cyanobacterial Blooms
AWWA杂志-使用活性炭去除含蓝藻水华的饮用水的毒性
1989-02-01
现行
AWWA ACE90131
The Removal of Glyphosate From Drinking Water
从饮用水中去除草甘膦
1990-01-01
现行
USP 08 2008 04-09 California Proposition 65
CA safe drinking water and toxic enforcement act
CA安全饮用水和有毒物质执法法案
现行
USP 08 2008 04-09 California Proposition 65
CA safe drinking water and toxic enforcement act
CA安全饮用水和有毒物质执法法案
现行
AWWA ACE61819
Using Nanoscale Materials in Water Treatment: Nanomaterials for Arsenic Removal
纳米材料在水处理中的应用:去除砷的纳米材料
2005-06-17
现行
AWWA ACE99306
Investigation of Perchlorate Removal in Drinking Water Systems
饮用水系统中高氯酸盐去除的研究
1999-01-01
现行
AWWA WQTC58884
Removal of Algal Toxins from Drinking Water
去除饮用水中的藻类毒素
2003-11-02
现行
AWWA ACE63225
Mammalian Cell Toxicity of Emerging Drinking Water Disinfection Byproducts
新兴饮用水消毒副产物的哺乳动物细胞毒性
2006-06-01
现行
AWWA JAW28444
Journal AWWA - Assessing Toxicity of Drinking Water Contaminants: An Overview
AWWA期刊-评估饮用水污染物的毒性:综述
1990-10-01
现行
AWWA ACE95066
A Review of Processes for Removing Nitrate From Drinking Water
饮用水中硝酸盐去除工艺综述
1995-01-01
现行
AWWA JAW21236
Journal AWWA - Removing Arsenic From Drinking Water
AWWA期刊-从饮用水中去除砷
1987-08-01
现行
AWWA WQTC71503
Iron and Manganese Catalytic Removal for Drinking Water Production
饮用水生产中的铁锰催化去除
2009-11-01
现行
AWWA WKICO66052
Advances in the Removal and Disposal of Uranium from Drinking Water
饮用水中铀的去除与处理进展
2008-01-01
现行
AWWA WQTC55134
Enhanced Coagulation and Removal of Cryptosporidium in Drinking Water Treatment
饮用水处理中隐孢子虫的强化混凝去除
2001-01-01
现行
AWWA WQTC58859
Utilization of a New Toxicity Testing System as a Drinking Water Surveillance Tool
利用新的毒性测试系统作为饮用水监测工具
2003-11-02
现行
AWWA JAW23829
Journal AWWA - Disposal of Radium Removed from Drinking Water
AWWA期刊-饮用水中镭的处理
1988-07-01
现行
AWWA JAW31622
Journal AWWA - Removal of Atrazine From Drinking Water by Ozonation
AWWA期刊-臭氧氧化去除饮用水中的阿特拉津
1992-09-01
现行
AWWA ACE94233
Removal of Bromate After Ozonation During Drinking Water Treatment
饮用水处理中臭氧氧化后溴酸盐的去除
1994-01-01
现行
AWWA ACE95038
Critical Assessment of Radon Removal Systems for Drinking Water Supplies
饮用水氡去除系统的关键评估
1995-01-01