1.1
本规程从人机工程学的角度为海事船舶和结构的设计和建造以及其中包含的设备、系统和子系统(包括供应商购买的硬件和软件)提供了人机工程学设计标准。
1.1.1
这些设计标准的重点是人机界面的设计和评估,包括一侧的人与控制和显示器之间的界面、物理环境、结构、控制台、面板和工作站、船舶空间的布局和布置、维护工作场所、标签和标牌、警报器、计算机屏幕、材料处理、阀门,以及另一方面的其他特定设备。
1.2
本规范中包含的标准应适用于船舶或海事结构内所有硬件和软件的设计和建造,船员以任何方式接触这些硬件和软件以实现操作、居住和维护目的。
1.3
除非船舶或海事结构设计合同或规范的具体规定中另有规定,否则本规范将用于设计海事船舶、结构、设备、系统和子系统,以适应第5类的全部潜在用户群体 % 女性至第95位 % 男性。
1.4
本规程分为以下部分和小节:
目录
部分
和
小节
标题
1.
范围
2.
参考文件
3.
术语
4.
意义和用途
5.
控制
5.1
控制设计原理
5.2
一般设计指南
5.3
控制移动
5.4
控制间距
5.5
控件编码
5.6
控制使用和设计
6.
显示器
6.1
视觉显示器
6.2
显示器的位置、方向、照明和布置
6.3
显示器照明
6.4
显示器类型
6.5
声音显示器
7.
警报
7.1
一般警报要求
7.2
视觉警报
7.3
声音警报
7.4
语音信息
7.5
报警启动站
7.6
国际海事组织的警报要求
8.
控制、显示和报警的集成
8.1
设计原则
8.2
分组关系安排原则
8.3
分隔分组
8.4
显示器和报警器的位置关系
8.5
控件与相关显示器和警报的位置关系
8.6
控制和显示移动关系
8.7
控件、显示器和设备之间的空间关系
8.8
分组设计的替代方法
8.9
桥梁控制和显示集成的特殊要求
9
人体测量学
9.1
一般设计要求
9.2
静态人体测量数据
10
工作场所安排
10.1
工作场所设计的基本原则
10.2
坐式工作站
10.3
立式工作站
10.4
跪地工作站
10.5
蹲式工作站
10.6
搁置
10.7
状态板和文件柜
10.8
工作台
10.9
立式过滤器和过滤器
10.10
工作站的到达限制
10.11
安全洗眼器和淋浴器
10.12
底座安装的控制装置和显示器
10.13
手动曲柄和泵
10.14
舱壁安装设备
10.15
设备机架、机柜和单个设备间距
10.16
控制台和控制面板
10.17
桥梁设计
11
辅助通道:楼梯、扶手、栏杆、垂直梯子、坡道、门、照明孔、舱口、踢出板、通道和走道以及工作平台)
11.1
楼梯、梯子和坡道
11.2
楼梯
11.3
坡道
11.4
垂直梯子
11.5
带安全笼的垂直梯子
11.6
带防坠落保护装置的垂直梯子
11.7
特殊梯子要求
11.8
把手/扶手
11.9
个人梯级
11.10
D型环梯
11.11
扶手
11.12
人行道、通道和人员流动的替代方式
11.13
高架工作平台
11.14
舱口、人孔、照明孔、检查口和踢出面板
11.15
门和拱门
11.16
永久通行方式(PMA)
12
阀门位置、方向和位置
12.1
一般设计要求
12.2
阀门临界值和位置
12.3
阀门安装高度和方向:手轮操作
12.4
阀门安装高度和方向:杠杆操作阀门
12.5
替代阀门方向
12.6
阀组
13
人机界面
13.1
一般设计要求
13.2
系统操作
13.3
计算机显示器
13.4
显示内容
13.5
显示器编码
13.6
动态显示器
13.7
显示格式
13.8
文本数据显示
13.9
图形显示
13.10
音频显示器
13.11
数据输入
13.12
交互式控件
13.13
图形控件
13.14
窗户
13.15
菜单
13.16
形式
13.17
警报
13.18
语言
13.19
反馈
13.20
提示
13.21
默认值
13.22
错误管理/数据保护
13.23
数据安全
13.24
帮助
13.25
软件
13.26
数据传输/消息传递
13.27
输入设备
13.28
光标
13.29
印刷
14
可居住性
14.1
噪音
14.2
室内气候
14.3
照明
14.4
全身振动和冲击
15
标记
15.1
标签设计标准
15.2
缩写
15.3
符号
15.4
控制台和面板上的组件标签
15.5
设备标识标签
15.6
电气系统标签
15.7
房间、甲板空间和空隙标识标签
15.8
管道标记标签
15.9
安全工作负载标识标签
15.10
装载重量标识标签
15.11
危险识别标志
15.12
信息标志
15.13
说明标签
15.14
图形示意图或图表
15.15
定向计划
15.16
紧急情况说明
16
材料搬运
16.1
支持手动物料提升和搬运的设计
16.2
举重
16.3
承载重量
16.4
把手和抓握区域的设计
16.5
辅助起重和搬运装置的设计
16.6
手推车和轮式娃娃
16.7
起重机设计
17
维护设计
17.1
一般设计要求
17.2
维护可达性
17.3
维护环境
17.4
润滑
17.5
案例
17.6
盖子
17.7
紧固件
17.8
检修通道的舱口、人孔、照明孔
17.9
诊断和故障排除
17.10
设备模块化
17.11
设备安装和安装
17.12
标准化
17.13
电线和电缆
17.14
导线
17.15
连接器
17.16
测试设备
17.17
保险丝和断路器
17.18
液压系统
17.19
储能装置
17.20
管法兰、阀芯和盲板
17.21
测试点和采样点
18
危险与安全
18.1
控制层次
18.2
安全标签、标志和排除区域标记
18.3
一般工作场所危险
18.4
一般设备相关危险
18.5
电气危险
18.6
机械危险
18.7
流体危害
18.8
安全屏障
18.9
坠落防护
18.10
紧急出口
19
通信
19.1
通信系统要求
19.2
麦克风
19.3
耳机
19.4
扬声器
19.5
电话系统
20
关键词
21
确认
附录X1
小船和高速船(HSC)附录
附录X2
人因工程(HFE)设计检查表
附录X3
防滑行走表面的选择和测试指南
数字列表
图形
标题
1.
控制运动预期
2.
脚踏开关设计要求
3.
踏板位置和设计要求
4.
踏板的横向间距
5.
离散旋转控制的设计标准
6.
离散旋转控制的分离要求
7.
连续旋转控制的尺寸、阻力和分离
8.
快速操作曲柄的正确安装
9
曲轴所需的尺寸、阻力和间距
10
按钮的设计标准
11
两种类型的图例开关(背光按钮)
12
图例开关的尺寸、位移和电阻
13
各类拨动开关的设计要求
14
摇臂开关的设计要求
15
离散滑动开关控件的尺寸、电阻和间距
16
连续滑动控件的尺寸、阻力和间距
17
杠杆的尺寸、阻力和间距
18
滑动杠杆的尺寸、阻力和间距
19
推拉控制装置的尺寸、位移和间距
20
视觉视线
21
主要和次要视场
22
主要、中间和次要比例尺标记的设计标准
23
刻度刻度、指针位置和刻度编号备选方案
24
比例编号放置
25
模拟显示器上量程的颜色和形状编码
26
圆形表盘显示器的零位和指针移动
27
用于快速检查读数的对齐指针
28
数字显示器设计要求
29
按通用功能对控件和显示进行分组
30
按单个设备对控件和显示进行分组
31
单个设备控制和显示分组的镜像排列(不推荐)
32
按通用设备对控件和显示器进行分组
33
按使用顺序对控件和显示进行分组
34
物理分离分组
35
使用边界线和边框分组
36
使用彩色和阴影垫分组
37
使用子面板分组
38
右侧操作员的单独控制装置和相关显示器的位置
39
多行控件和显示器的排列
40
多行显示器和单行控件的排列
41
报警、显示和控制之间的位置关系
42
控制指针和状态指示器之间的位置关系
43
控制和显示移动关系
44
控件、显示器和设备之间的空间关系
45
设备和控制面板之间的空间关系
46
冗余控件和显示器的空间关系
47
复制远程空间中设备位置的面板布局
48
物理设备功能布局模拟
49
不考虑设备布局的功能组模拟
50
站立身体尺寸
51
座椅车身尺寸
52
深度和宽度尺寸
53
手和脚尺寸
54
手套手尺寸
55
封头尺寸
56
最大6 mm的标高变化(
1.
/
4.
英寸)
57
座椅工作空间尺寸
58
计算机工作站的尺寸
59
桌子或其他不需要桌子的工作地点的单个或多个人员的尺寸
60
CRT型工作站的座位
61
座位式工作站后面的净空
62
控制就座人员的安装高度
63
座位人员的显示器安装高度
64
控制站立人员的安装高度
65
站立人员的显示器安装高度
66
控制跪着的人的安装高度
67
下跪人员的显示器安装高度
68
跪地工人所需尺寸
69
控制蹲下人员的安装高度
70
蹲下人员的显示器安装高度
71
深蹲工人所需尺寸
72
可完全进入的货架的工作场所尺寸
73
机柜上方货架的工作场所尺寸
74
货架的工作场所尺寸要求视觉高于顶部
75
下货架的前间隙要求
76
状态板的安装高度
77
文件柜前面的间隙
78
工作台尺寸
79
越过障碍物或障碍物的安全到达距离
80
通道中隔板安装设备的安装高度
81
普通电气固定装置的安装高度
82
控制器和设备之间的直接空间关系
83
位于Athwartship的控制台上前后设备与控制装置和显示器的空间关系
84
坐式单操作员控制台尺寸
85
环绕式座椅控制台
86
特殊宽度控制台
87
多层立式控制台
88
多层座椅控制台
89
台式立式控制台的尺寸
90
货物和压载物转运控制台
91
楼梯尺寸
92
直坡道尺寸
93
带转弯平台的坡道
94
带折返式转弯平台的坡道
95
垂直梯子尺寸
96
垂直梯布置的尺寸
97
垂直梯子贯穿件的平台/平台尺寸
98
笼式梯子尺寸
99
笼的形状和尺寸
100
梯子和攀爬者安全装置尺寸
101
用于梯子坠落保护的延伸栏杆(前视图)
102
用于梯子坠落保护的延伸栏杆(侧视图)
103
用于梯子坠落保护的延伸栏杆和笼子(前视图)
104
用于梯子坠落保护的延伸栏杆和笼子(侧视图)
105
用作梯子延伸件的把手或扶手
106
从梯子过渡到中间平台的把手
107
单个梯级的推荐设计标准
108
D型环爬梯的尺寸
109
固定式扶手设计
110
可拆卸扶手尺寸
111
特殊扶手设计尺寸
112
过渡扶手尺寸
113
与人员流动相关的其他设计特点
114
垂直方向安装的矩形检修孔的尺寸,需要一个台阶才能到达开口
115
矩形、方形和圆形舱口、人孔和照明孔的尺寸
116
照明孔尺寸
117
进入垂直逃生舱口
118
高架舱口通道
119
通过凸起的舱口进入货舱
120
车门位置
121
手轮扭矩的理想上限
122
带垂直阀杆的手轮阀的安装高度
123
带水平阀杆的手轮阀的安装高度
124
带角阀杆的手轮阀的安装高度
125
带垂直阀杆的杠杆操作阀的安装高度
126
带水平阀杆的杠杆操作阀的安装高度
127
只能从一侧接近的阀杆的行程方向
128
从弯腰或下蹲姿势进行身体伸展
129
阀杆和手轮的安装位置低于固定面
130
平行于阀门的梯子的方向和延伸
131
垂直于阀门的梯子的方向和延伸
132
从梯子上操作阀门
133
位于Athwartship的储罐阀组
134
位于前后的储罐阀组
135
填充阀、高吸入阀和低吸入阀的阀组
136
默认按钮
137
按钮状态
138
单选按钮
139
复选框
140
滑块控件
141
消息窗口设计
142
手指操作位移操纵手柄技术规格
143
轨迹球尺寸、阻力和间隙
144
允许噪声暴露限值
145
大型外壳通风要求
146
表面反射率值
147
有限暴露的健康指导区
148
独立符号
149
控制台和面板标签指南
150
控制和控制设置标签
151
控制和显示组标签
152
多个控件的控件设置标签
153
设备标签格式
154
传感器标签
155
管道标记标签
156
具有两种颜色的管道标记标签
157
危险信号字头
158
标志上的文字和符号示例
159
信息标志示例
160
手柄尺寸
161
手推车的使用
162
玩偶的使用
163
案例方向
164
检修开口盖
165
定位销示例
166
电缆布置
167
接线盒中的建议电缆布置
168
流体管路连接建议
169
将物品放置在隔板上的区域
170
安全屏障
X1.1毫米
主要和次要视场
表格列表
桌子
标题
1.
推荐的手动控制
2.
控制运动预期
3.
两个控件之间的最小间距
4.
位移控制和等距控制的比较
5.
北美工业的典型状态显示和报警颜色代码
6.
数字显示器的字符大小
7.
音频信号类型的功能评估
8.
视觉报警器颜色编码指南
9
声音响度和频率的一般建议
10
声音报警声音选择指南
11
服装和姿势效果
12
可获得人类测量数据的国际地理区域
13
身高尺寸国际人口
14
坐眼高度尺寸国际人口
15
前瞻性维度国际人口
16
来自世界四个地区的男性人体测量数据
17
来自世界四个地区的女性人体测量数据
18
美国成年雌性和雄性体重
19
座椅工作空间尺寸
20
坐式计算机工作站的尺寸
21
访问类型的选择
22
楼梯尺寸
23
楼梯宽度
24
扶手布置
25
推荐的倾斜角度
26
人行道和通道尺寸
27
其他人员流动相关功能的尺寸
28
安装在站立表面下方的操纵杆和手轮的检修孔和安装深度尺寸
29
系统响应时限
30
非键盘输入设备的优点和缺点
31
键盘按键特性
32
指针形状和关联函数
33
定点设备按钮操作
34
限制鼠标尺寸
35
最大允许噪声级
36
听力保护器的噪音衰减
37
船舶和海事结构的照明水平
38
最大亮度比
39
操作环境类型
40
设备标签示例
41
管道标签格式
42
容器/结构管道颜色编码方案示例
43
用于颜色编码的色度坐标
44
消息文本字符高度
45
起重设计重量限制
46
承载设计重量限制
47
限制因素
48
坐姿,向前伸展(双臂)
49
双腿交叉坐着,向前伸展(双臂)
50
站立,向前伸展(双臂)
51
站立,前屈(首选手臂)
52
站立,侧向伸展(首选手臂)
53
单手工具进入的开口尺寸
54
无工具单手进入的开口尺寸
55
无需工具即可进入手臂的开口尺寸
56
双手通道的开口尺寸
57
热温度限制
58
冲击电流强度及其可能的后果
59
最低语音清晰度得分
X1.1毫米
HSC和小船应用能见度标准
X1.2毫米
北美人口的前向功能范围测量
第2.1页
设计的人为因素检查表
1.5
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.6
本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。
====意义和用途======
4.1
本实践的目的是为海事船舶和结构提供符合人体工程学的设计标准,以确保海事系统和设备的设计符合人类性能、人类工作量、健康和安全、生存能力和可居住性的要求。
4.2
人类行为原理:
4.2.1
人类行为的基本原则可以控制或影响每个人在工作场所的表现。其中一些行为是文化衍生的,而另一些行为则是世界上所有文化和地理区域的普遍和统一行为。这些行为会影响一个人对工作的身体、社会和心理态度,以及他们工作的安全程度。
在船舶或海事结构的设计中,如果不满足这些行为原则,可能会鼓励甚至胁迫海事人员在日常活动中承担不安全风险。因此,船舶和海事设备、系统和设施的设计者必须了解这些原则,为海事人员提供安全高效的工作场所。
4.2.2
这些原则包括:
4.2.2.1
如果船员认为船舶或海事设施的设计不安全或效率低下,用户会对其进行修改,通常会解决最初的问题,但会引入其他可能与原始问题一样糟糕或更糟的问题。
4.2.2.2
设备设计应鼓励安全使用,即不提供可能以不安全方式使用的硬件和软件。
4.2.2.3
如果设备或系统的设计不符合用户的文化和刻板印象,导致他们认为它会运行,那么人为错误的可能性就会大大增加。
4.2.2.4
如果操作人员/维护人员认为设备或系统过于复杂,或者需要比他们认为必要的更多的精力来操作或维护,他们将始终寻找“捷径”。此外,这种“捷径”可能被认为是安全的,而事实并非如此。
4.2.2.5
再多的培训、公司或组织政策、报复行动的威胁、技术手册或培训指南中的警告说明,或恳求员工在工作中保持安全,都无法克服鼓励、导致甚至胁迫员工在工作上采取不安全行为的糟糕设计。
防止不安全设计导致事故的最有效方法是消除不安全设计。
4.2.2.6
设备使用者可能无法识别设计中的潜在危险。因此,设计人员应识别用户可能无法识别的不安全特征,以最大限度地减少或消除不安全的任务、操作和行为。此外,如果存在危险,设计者应向用户清楚地传达过程和程序中固有的已知危险。
4.2.2.7
设计人员应考虑人为错误和设计设备的可能性,以便不正确的使用(故意或意外)对用户造成的伤害很小或没有。
4.2.2.8
如果标签、说明或操作图表不完整、不清晰、可读且位置不正确,则设备操作员和维护人员将被迫推断其状态。
4.2.2.9
设计师和工程师不得将自己作为评估特定设计的标准。人有多种形状、大小、心智能力和能力。因此,为身体、心理和社会上的所有潜在用户进行设计。
4.2.2.10
应保护人们免受伤害。设计者不能制造不安全的设备或系统,并期望用户对其安全使用承担全部责任。
4.2.2.11
设备维护的容易程度会影响设备的可靠性,也就是说,维护的难度越大,维护的次数就越少。
4.2.2.12
设计为需要多个操作员同时工作的设备增加了操作员出错的可能性。
4.2.2.13
操作/维护程序应清晰、明确和全面,否则会被误解或忽视。
4.2.2.14
管道、电缆桥架等结构物品,或任何其他看起来足够坚固的物品,可供人抓住或站立,并放置在方便的位置使用,最终将用于该目的。
4.2.2.15
用户期望工作场所的设计和安排保持一致。因此,如果该工作场所或其任何部分出现在其工作环境中的多个地方,则其位置和外观应与每个位置相同。
4.2.2.16
当与特定设备相关的控制装置和显示器放置在控制台或控制面板上时,它们应位于控制台或面板上,以复制操作员在船舶或结构上看到的设备的实际位置。
因此,操作员面对控制台时左侧的设备应出现在控制面板或控制台的左侧,右侧的设备应显示在控制台或面板的右侧。现实世界与与该世界的设备和系统相关的控制和显示之间的这种“空间关系”在船舶和海事结构的设计中极为重要。
4.2.3
用户根据自己的文化体验发展行为模式。设计一艘忽视或违反这些文化衍生的行为模式的船只或结构将不可避免地增加用户错误的风险。
4.3
冲突-
如果本规范中包含的设计标准与人体工程学设计标准的其他来源之间存在冲突,则应以本规范为准,除非冲突标准是由监管机构制定的
4.4
覆盖范围-
容器、结构、系统、子系统和设备的设计应使用本文中包含的设计标准,以提供以下内容:
4.4.1
安全大气条件,包括温度和湿度;
4.4.2
对声学噪声和振动的限制,以防止性能退化和生理损伤;
4.4.3
人员及其设备的空间,以及在正常和紧急情况下执行操作和维护任务所需的移动和活动的自由空间;
4.4.4
在正常和紧急情况下,个人之间以及人员与其设备之间的物理、视觉、听觉和其他通信联系;
4.4.5
有效安排操作和维护工作场所、设备、结构元件、控制装置和显示器;
4.4.6
自然或人工照明,其水平适合在正常和紧急情况下执行所有操作和维护任务;
4.4.7
正常和紧急情况下的安全通道、舱口、楼梯、梯子、走道、平台、坡道和其他进出通道;
4.4.8
提供防护设备和服装、系统、设备、容器和结构,这些设备和服装设计由穿着设备和服装的人员操作和维护;
4.4.9
控制/显示接口与人类信息处理能力的兼容性;
4.4.10
在操作员每次控制动作或采取行动后,向操作员提供设备或系统性能的即时、准确和相关反馈;
4.4.11
满足人类行为需求的设计,如空间关系、一致性、稳态以及文化和设备期望;
4.4.12
提供清晰、简洁和易懂的标签、危险标识、说明和程序;
4.4.13
在故障可能使重要系统失效或对设备造成灾难性损坏、人员受伤或丧失任务能力的领域提供故障安全设计;
4.4.14
最大限度地减少系统运行和维护中潜在的人为错误发生率的设计,特别是在压力条件下,以及确保犯下的错误能够及时纠正的设计(设计是容错的);
4.4.15
尽量减少培训时间和成本,鼓励简单化,以减少人员操作或维护所需的特殊技能或天生能力;
4.4.16
尽量减少船舶运动对人类性能和健康安全的不利影响的设计;和
4.4.17
为来自海洋世界所有地理区域的用户群体提供安全高效的操作和维护的设计。
4.5
标准化-
对于多次出现在容器或结构上的项目或设计,设备和面板布局的控制、显示、标记、编码、标签和布置方案应是统一的。人机界面应展示基于惯例的通用设计方法,并符合操作员和维护人员的期望。
4.6
现成设备-
选择现成商业或政府提供设备的一个标准应该是设备符合本规范设计标准的程度。如果现成设备需要修改以与其他设备接口,则修改的设计应符合本规范。
4.7
尽量减少人员-
船舶或结构、设备、系统和子系统的设计目标应是减少参与完成特定任务的人员数量,尤其是同时参与。另一个设计目标应是优化船舶或系统的人员配备,即符合人员性能、工作量和安全要求、可靠性、可负担性和风险限制的最低人员数量。
4.8
完整性-
人们意识到,没有任何设计指南或实践能够涵盖船舶或海事结构演变过程中可能出现的每一项设计要求。人们认识到,在某些情况下,可能需要根据现有数据来解释特定的设计要求。在某些情况下,设计标准可能必须从本实践以外的来源获取。当出现这些情况时,重要的是由受过培训的人因工程(HFE)专业人员提供帮助,他们熟悉这一点以及其他面向海事的设计指南和标准,并在将这些指南应用于船舶和海事结构设计方面有经验。
图1
控制运动预期
1.1
This practice provides ergonomic design criteria from a human-machine perspective for the design and construction of maritime vessels and structures and for equipment, systems, and subsystems contained therein, including vendor-purchased hardware and software.
1.1.1
The focus of these design criteria is on the design and evaluation of human-machine interfaces, including the interfaces between humans on the one side and controls and displays, physical environments, structures, consoles, panels and workstations, layout and arrangement of ship spaces, maintenance workplaces, labels and signage, alarms, computer screens, material handling, valves, and other specific equipment on the other.
1.2
The criteria contained within this practice shall be applied to the design and construction of all hardware and software within a ship or maritime structure that the human crew members come in contact in any manner for operation, habitability, and maintenance purposes.
1.3
Unless otherwise stated in specific provisions of a ship or maritime structure design contract or specification, this practice is to be used to design maritime vessels, structures, equipment, systems, and subsystems to fit the full potential user population range of 5th % females to 95th % males.
1.4
This practice is divided into the following sections and subsections:
TABLE OF CONTENTS
Section
and
Subsections
Title
1
Scope
2
Referenced Documents
3
Terminology
4
Significance and Use
5
Controls
5.1
Principles of Control Design
5.2
General Design Guidelines
5.3
Control Movement
5.4
Control Spacing
5.5
Coding of Controls
5.6
Control Use and Design
6
Displays
6.1
Visual Displays
6.2
Location, Orientation, Lighting, and Arrangement of Displays
6.3
Display Illumination
6.4
Display Types
6.5
Audible Displays
7
Alarms
7.1
General Alarm Requirements
7.2
Visual Alarms
7.3
Audible Alarms
7.4
Voice Messages
7.5
Alarm Initiation Stations
7.6
Alarm Requirements by IMO
8
Integration of Controls, Displays, and Alarms
8.1
Principles of Design
8.2
Grouping Relationships—Principles of Arrangement
8.3
Separating Groupings
8.4
Position Relationships of Displays and Alarms
8.5
Position Relationships of Controls to Associated Displays and Alarms
8.6
Control and Display Movement Relationships
8.7
Spatial Relationship Between Controls, Displays, and Equipment
8.8
Alternative Approach to Grouping Design
8.9
Special Requirements for Control and Display Integration on Bridges
9
Anthropometry
9.1
General Design Requirements
9.2
Static Anthropometric Data
10
Workplace Arrangements
10.1
Basic Principles of Workplace Design
10.2
Seated Workstation
10.3
Standing Workstation
10.4
Kneeling Workstation
10.5
Squatting Workstation
10.6
Shelving
10.7
Status Boards and File Cabinets
10.8
Work Benches
10.9
Vertical Strainers and Filters
10.10
Reach Limitations at Workstations
10.11
Safety Eyewash Fountains and Showers
10.12
Pedestal-Mounted Controls and Displays
10.13
Hand Cranks and Pumps
10.14
Bulkhead-Mounted Equipment
10.15
Equipment Racks, Cabinets, and Individual Equipment Spacing
10.16
Consoles and Control Panels
10.17
Bridge Design
11
Access Aids: Stairs, Handrails, Railings, Vertical Ladders, Ramps, Doors, Lightening Holes, Hatches, Kick-Out Panels, Passageways and Walkways, and Work Platforms)
11.1
Stairs, Ladders, and Ramps
11.2
Stairs
11.3
Ramps
11.4
Vertical Ladders
11.5
Vertical Ladders with Safety Cages
11.6
Vertical Ladders with Positive Fall Protection Devices
11.7
Special Ladder Requirements
11.8
Handle/Hand Grab
11.9
Individual Rung Ladders
11.10
D-Ring Ladders
11.11
Handrails
11.12
Walkways, Passageways, and Alternate Means of Personnel Movement
11.13
Elevated Work Platforms
11.14
Hatches, Manways, Lightening Holes, Inspection Ports, and Kick-Out Panels
11.15
Doors and Arches
11.16
Permanent Means of Access (PMA)
12
Valve Placement, Orientation, and Location
12.1
General Design Requirements
12.2
Valve Criticality and Location
12.3
Valve-Mounting Heights and Orientations: Handwheel Operated
12.4
Valve-Mounting Heights and Orientations: Lever-Operated Valves
12.5
Alternative Valve Orientations
12.6
Valve Manifolds
13
Human-Computer Interface
13.1
General Design Requirements
13.2
System Operations
13.3
Computer Displays
13.4
Display Content
13.5
Display Coding
13.6
Dynamic Displays
13.7
Display Format
13.8
Textual Data Displays
13.9
Graphic Displays
13.10
Audio Displays
13.11
Data Entry
13.12
Interactive Control
13.13
Graphic Controls
13.14
Windows
13.15
Menus
13.16
Forms
13.17
Alarms
13.18
Language
13.19
Feedback
13.20
Prompts
13.21
Defaults
13.22
Error Management/Data Protection
13.23
Data Security
13.24
Help
13.25
Software
13.26
Data Transmission/Messaging
13.27
Input Devices
13.28
Cursors
13.29
Printing
14
Habitability
14.1
Noise
14.2
Indoor Climate
14.3
Lighting
14.4
Whole-body Vibration and Shock
15
Labeling
15.1
Design Criteria of Labels
15.2
Abbreviations
15.3
Symbols
15.4
Component Labels on Consoles and Panels
15.5
Equipment Identification Labels
15.6
Electrical System Labels
15.7
Room, Deck Space, and Void Identification Labels
15.8
Pipe Marker Labels
15.9
Safe Working Load Identification Labels
15.10
Load Weight Identification Labels
15.11
Hazard Identification Signs
15.12
Information Signs
15.13
Instruction Labels
15.14
Graphical Schematics or Diagrams
15.15
Orientation Plans
15.16
Emergency Instructions
16
Material Handling
16.1
Design to Support Manual Material Lifting and Carrying
16.2
Weight Lifting
16.3
Weight Carrying
16.4
Design of Handles and Grasp Areas
16.5
Design of Auxiliary Hoisting and Carrying Devices
16.6
Hand Trucks and Wheeled Dollies
16.7
Crane Design
17
Design for Maintenance
17.1
General Design Requirements
17.2
Maintenance Accessibility
17.3
Maintenance Environments
17.4
Lubrication
17.5
Cases
17.6
Covers
17.7
Fasteners
17.8
Hatches, Manways, Lightening Holes for Maintenance Access
17.9
Diagnostics and Troubleshooting
17.10
Equipment Modularization
17.11
Equipment Mounting and Installation
17.12
Standardization
17.13
Electrical Wires and Cables
17.14
Conductors
17.15
Connectors
17.16
Test Equipment
17.17
Fuses and Circuit Breakers
17.18
Hydraulic Systems
17.19
Stored Energy Devices
17.20
Pipe Flanges, Spools, and Blinds
17.21
Test and Sample Points
18
Hazards and Safety
18.1
Hierarchy of Controls
18.2
Safety Labels, Signs, and Excluded Area Markings
18.3
General Workplace Hazards
18.4
General Equipment-Related Hazards
18.5
Electrical Hazards
18.6
Mechanical Hazards
18.7
Fluid Hazards
18.8
Safety Barriers
18.9
Fall Protection
18.10
Emergency Egress
19
Communications
19.1
Communication System Requirements
19.2
Microphones
19.3
Headsets
19.4
Loudspeakers
19.5
Telephone Systems
20
Keywords
21
Acknowledgement
Appendix X1
Small Boat and High Speed Craft (HSC) Appendix
Appendix X2
Human Factors Engineering (HFE) Design Checklist
Appendix X3
Guidance for the Selection and Testing of Slip Resistant Walking Surfaces
LIST OF FIGURES
Figure
Title
1
Control Movement Expectations
2
Foot-Operated Switches Design Requirements
3
Pedal Location and Design Requirements
4
Lateral Spacing for Pedals
5
Design Criteria for Discrete Rotary Controls
6
Separation Requirements for Discrete Rotary Controls
7
Dimension, Resistance, and Separation of Continuous Rotary Controls
8
Proper Mounting of Rapidly Operated Cranks
9
Dimensions, Resistance, and Separations Required for Cranks
10
Design Criteria for Pushbuttons
11
Two Types of Legend Switches (Backlit Pushbuttons)
12
Size, Displacement, and Resistance for Legend Switches
13
Design Requirements for Various Types of Toggle Switches
14
Design Requirements for Rocker Switches
15
Dimensions, Resistance, and Separation for Discrete Slide Switch Controls
16
Dimensions, Resistance, and Separation for Continuous Slide Controls
17
Dimensions, Resistance, and Separation for Levers
18
Dimensions, Resistance, and Separation for Slide Levers
19
Dimensions, Displacement, and Separation of Push-Pull Controls
20
Visual Lines of Sight
21
Primary and Secondary Fields-of-view
22
Design Criteria for Major, Intermediate, and Minor Scale Markings
23
Scale Graduation, Pointer Position, and Scale Numbering Alternatives
24
Scale Number Placement
25
Color and Shape Coding of Ranges on an Analog Display
26
Zero Position and Pointer Movement for Circular Dial Displays
27
Aligned Pointers for Rapid Check Readings
28
Digital Display Design Requirements
29
Grouping Controls and Displays by Common Function
30
Grouping Controls and Displays by Individual Equipment
31
Mirror-Imaged Arrangement of Individual Equipment Control and Display Groupings (Not Recommended)
32
Grouping Controls and Displays by Common Equipment
33
Grouping Controls and Displays by Sequence of Use
34
Grouping with Physical Separation
35
Grouping with Boundary Lines and Borders
36
Grouping with Colored and Shaded Pads
37
Grouping with Sub-panels
38
Position of Individual Controls and Associated Displays for Right-handed Operator
39
Arrangement of Multiple Rows of Controls and Displays
40
Arrangement of Multiple Rows of Displays and a Single Row of Controls
41
Positional Relationship between Alarm, Display, and Control
42
Positional Relationship between Control Pointer and Status Indicator
43
Control and Display Movement Relationship
44
Spatial Relationship Between Controls, Displays, and Equipment
45
Spatial Relationships Between Equipment and Control Panels
46
Spatial Relationships for Redundant Controls and Displays
47
Panel Layout That Replicates Location of Equipment in Remote Space
48
Mimic of Physical Equipment Functional Layout
49
Mimic of Functional Groups Irrespective of Equipment Layout
50
Standing Body Dimensions
51
Seated Body Dimensions
52
Depth and Breadth Dimensions
53
Hand and Foot Dimensions
54
Gloved Hand Dimensions
55
Head Dimensions
56
Changes in Levels up to a Maximum of 6 mm (
1
/
4
in.)
57
Seated Workspace Dimensions
58
Dimensions for a Computer Workstation
59
Dimensions for Single or Multiple Personnel at a Table or Other Duty Station Not Requiring a Desk
60
Seating at CRT-Type Workstations
61
Clearance Behind a Seated Workstation
62
Control Mounting Height for Seated Personnel
63
Display Mounting Height for Seated Personnel
64
Control Mounting Height for Standing Personnel
65
Display Mounting Height for Standing Personnel
66
Control Mounting Height for a Kneeling Person
67
Display Mounting Height for Kneeling Personnel
68
Required Dimensions for a Kneeling Worker
69
Control Mounting Height for Squatting Personnel
70
Display Mounting Heights for Squatting Personnel
71
Required Dimensions for a Squatting Worker
72
Workplace Dimensions for Shelves with Full Access
73
Workplace Dimensions for Shelves Located Above a Cabinet
74
Workplace Dimensions for Shelves Requiring Vision Over the Top
75
Front Clearance Requirement for Lower Shelves
76
Mounting Height of Status Boards
77
Clearance in Front of Filing Cabinets
78
Workbench Dimensions
79
Safe Reach Distances Over an Obstacle or Barrier
80
Mounting Heights for Bulkhead-mounted Equipment in Passageways
81
Mounting Heights for Common Electrical Fixtures
82
Direct Spatial Relationships Between Controls and Equipment
83
Spatial Relationship of Fore and Aft Equipment to Controls and Displays on a Console Located Athwartship
84
Seated Single-operator Console Dimensions
85
Wraparound Seated Console
86
Special Width Console
87
Multi-tiered Standing Console
88
Multi-tiered Seated Console
89
Dimensions for Desktop Standing Console
90
Cargo and Ballast Transfer Consoles
91
Stair Dimensions
92
Straight Run Ramp Dimensions
93
Ramp with Turning Platform
94
Ramp with Switchback Turning Platform
95
Vertical Ladder Dimensions
96
Dimensions for a Vertical Ladder Arrangement
97
Platform/Landing Dimensions for Vertical Ladder Penetration
98
Caged Ladder Dimensions
99
Cage Shape and Size
100
Ladder and Climber Safety Device Dimensions
101
Extended Railing for Ladder Fall Protection (Front View)
102
Extended Railing for Ladder Fall Protection (Side View)
103
Extended Railing and Cage for Ladder Fall Protection (Front View)
104
Extended Railing and Cage for Ladder Fall Protection (Side View)
105
Handles or Hand Grabs for Use as Ladder Extensions
106
Handle for Transition from a Ladder to an Intermediate Platform
107
Recommended Design Criteria for Individual Rung Ladders
108
Dimensions for D-Ring Ladders
109
Fixed Handrail Design
110
Removable Handrail Dimensions
111
Special Handrail Design Dimensions
112
Transition Handrail Dimensions
113
Additional Personnel Movement-related Design Features
114
Dimensions for Rectangular Access Openings Installed in a Vertical Orientation Requiring a Step to Reach the Opening
115
Dimensions for Rectangular, Square, and Round Hatches, Manways, and Lightening Holes
116
Dimensions for Lightening Holes
117
Access to Vertical Escape Hatches
118
Access to Overhead Hatch
119
Access into a Cargo Hold Through a Raised Hatch
120
Door Placement
121
Desirable Upper Limits for Handwheel Torque
122
Mounting Heights for Handwheel Valves With Vertical Stems
123
Mounting Heights for Handwheel Valves With Horizontal Stems
124
Mounting Heights for Handwheel Valves With Angled Stems
125
Mounting Heights for Lever-Operated Valves With Vertical Stems
126
Mounting Heights for Lever-Operated Valves With Horizontal Stems
127
Direction of Travel for Valve Levers Accessible From One Side Only
128
Physical Reach from a Stooping or Squatting Position
129
Mounting Position for Valve Levers and Handwheels Below Standing Surface
130
Orientation and Reach from Ladder Parallel to Valves
131
Orientation and Reach from Ladder Perpendicular to Valves
132
Operating Valves from a Ladder
133
Valve Manifold for Tanks Located Athwartship
134
Valve Manifold for Tanks Located Fore and Aft
135
Valve Manifold for Fill, High-suction, and Low-suction Valves
136
Default Push Button
137
Push Button States
138
Radio Buttons
139
Check Boxes
140
Slider Control
141
Message Window Design
142
Finger-Operated Displacement Joystick Specifications
143
Trackball Dimensions, Resistance, and Clearance
144
Permissible Noise Exposure Limits
145
Large Enclosure Ventilation Requirements
146
Surface Reflectance Values
147
Health Guidance Zones for Limited Exposures
148
Independent Symbols
149
Guidelines for Labels on Consoles and Panels
150
Control and Control Setting Labels
151
Control and Display Group Labels
152
Control Setting Labels for Multiple Controls
153
Equipment Label Format
154
Sensor Label
155
Pipe Marker Labels
156
Pipe Marker Labels with Two Colors
157
Hazard Signal Word Headers
158
Examples of Text and Symbol on Signs
159
Example of Information Sign
160
Handle Dimensions
161
Use of Hand Trucks
162
Use of Dollies
163
Case Orientation
164
Access Opening Covers
165
Example of Alignment Pins
166
Cable Arrangements
167
Suggested Cable Arrangement in a Junction Box
168
Fluid Line Connection Recommendations
169
Areas To Place Items on Bulkhead
170
Safety Barriers
X1.1
Primary and Secondary Fields of View
LIST OF TABLES
Table
Title
1
Recommended Manual Controls
2
Control Movement Expectations
3
Minimum Spacing Between Two Controls
4
Comparison of Displacement and Isometric Controls
5
Typical Status Display and Alarm Color Codes for North American Industry
6
Character Sizes for Digital Displays
7
Functional Evaluation of Types of Audio Signals
8
Guidelines for Color Coding of Visual Alarms
9
General Recommendations for Sound Loudness and Frequency
10
Guidelines for Selecting Audible Alarm Sounds
11
Clothing and Postural Effects
12
International Geographical Regions for Which Anthropometric Data Are Available
13
Standing Height Dimensions—International Population
14
Seated Eye Height Dimensions—International Population
15
Forward Reach Dimensions—International Population
16
Male Anthropometric Data from Four Regions of the World
17
Female Anthropometric Data from Four Regions of the World
18
Weights for American Adult Females and Males
19
Seated Workspace Dimensions
20
Dimensions for a Seated Computer Workstation
21
Selection of Access Type
22
Stair Dimensions
23
Stair Widths
24
Handrail Arrangements
25
Recommended Ramp Angle Inclinations
26
Walkway and Passageway Dimensions
27
Dimensions for Additional Personnel Movement-related Features
28
Access Opening and Mounting Depth Dimensions for Levers and Handwheels Mounted Below the Standing Surface
29
System Response Time Limits
30
Advantages and Disadvantages of Nonkeyboard Input Devices
31
Keyboard Push-button Characteristics
32
Pointer Shapes and Associated Functions
33
Pointing Device Button Actions
34
Limiting Dimensions for Mouse
35
Maximum Permissible Noise Levels
36
Noise Attenuation from Hearing Protectors
37
Lighting Levels for Ships and Maritime Structures
38
Maximum Brightness Ratios
39
Operational Environment Types
40
Examples of Equipment Labels
41
Pipe Label Format
42
Example Color-Coding Scheme for Vessel/structure Piping
43
Chromaticity Coordinates for Color Coding
44
Message Text Character Heights
45
Design Weight Limits for Lifting
46
Design Weight Limits for Carrying
47
Limiting Factors
48
Seated, Forward Reach (Both Arms)
49
Cross-Legged Seated, Forward Reach (Both Arms)
50
Standing, Forward Reach (Both Arms)
51
Standing, Forward Reach (Preferred Arm)
52
Standing, Lateral Reach (Preferred Arm)
53
Opening Dimensions for Single-hand Access with Tools
54
Opening Dimensions for Single-hand Access without Tools
55
Opening Dimensions for Arm Access without Tools
56
Opening Dimensions for Two-hand Access
57
Thermal Temperature Limits
58
Shock Current Intensities and Their Probable Consequences
59
Minimum Speech Intelligibility Scores
X1.1
Visibility Standards for HSC and Small Boat Application
X1.2
Forward Functional Reach Measurements for North American Population
X2.1
Human Factors Checklist for Design
1.5
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
The objective of this practice is to provide ergonomic design criteria for maritime vessels and structures to ensure that maritime systems and equipment are designed in compliance with requirements for human performance, human workload, health and safety, survivability, and habitability.
4.2
Principles of Human Behavior:
4.2.1
There are basic principles of human behavior that control or influence how each person performs in their workplace. Some of these behaviors are culturally derived, while others are general and uniform across all cultures and geographical regions of the world. These behaviors influence a person’s physical, social, and psychological approach toward the work they do and how safely they do that work. Failure to satisfy these behavioral principles in the design of a ship or maritime structure can encourage, or even coerce, maritime personnel into taking unsafe risks in their everyday activities. It is, therefore, imperative that designers of ships and maritime equipment, systems, and facilities know these principles to provide a safe and efficient workplace for maritime personnel.
4.2.2
These principles include:
4.2.2.1
If the design of the ship or maritime facility is considered to be unsafe or inefficient by the crew, it will be modified by the users, often solving the initial problem but introducing others that may be as bad, or worse, than the original.
4.2.2.2
Equipment design shall be such that it encourages safe use, that is, does not provide hardware and software that can be used in an unsafe manner.
4.2.2.3
If the equipment or system is not designed to operate as the users’ cultural and stereotypical expectations lead them to think that it will operate, the chance for human error is significantly increased.
4.2.2.4
If equipment or systems are perceived by operators/maintainers to be too complex or require more effort to operate or maintain than they believe is necessary, they will always look for a “shortcut.” Further, this “shortcut” may be perceived as being safe when it is not.
4.2.2.5
No amount of training, company or organizational policy, threats of retaliatory action, warning notes in a technical manual or training guide, or pleading with personnel to be safe on the job can overcome poor design that encourages, leads, or even coerces personnel into unsafe acts on the job. The most efficient way to prevent unsafe design from contributing to an accident is to eliminate the unsafe design.
4.2.2.6
Equipment users may not recognize latent hazards in a design. Therefore designers shall identify unsafe features that may not be recognized by users to minimize, or eliminate unsafe tasks, operations and acts. In addition, if hazards exist, the designer should clearly communicate known hazards inherent in processes and procedures to the users.
4.2.2.7
Designers shall consider the possibility for human error and design equipment so that incorrect use (deliberate or accidental) will result in little or no harm to the user.
4.2.2.8
Equipment operators and maintainers will be forced to infer as to what a label, instruction, or operational chart states if it is not complete, legible, readable, and positioned correctly.
4.2.2.9
Designers and engineers shall never use themselves as the standard against which a particular design is evaluated. People come in many shapes, sizes, mental capacities, and capabilities. Therefore, design for the full range of potential users, physically, mentally, and socially.
4.2.2.10
People shall be protected against themselves. Designers cannot create an unsafe piece of equipment or system and expect the users to assume full responsibility for its safe use.
4.2.2.11
Ease of equipment maintenance affects the equipment’s reliability, that is, the harder it is to be maintained, the less it will be maintained.
4.2.2.12
Equipment designed to require multiple operators working together simultaneously increases the likelihood of operator errors.
4.2.2.13
Operational/maintenance procedures shall be clear, definitive, and comprehensive, otherwise, they will be misinterpreted or ignored.
4.2.2.14
Structural items such as piping, cable trays, or any other item that appears strong enough to be used by a person to hold onto or stand on, and is placed in a convenient location to use for that purpose, will eventually be used for that purpose.
4.2.2.15
Users expect consistency in the design and arrangement of their workplace. Therefore, if that workplace, or any part thereof, appears in more than one place in their work environment, it is expected to be located and look the same way at every location.
4.2.2.16
When controls and displays associated with particular pieces of equipment are placed on a console or control panel, they shall be located on that console or panel to replicate the actual location of the equipment on the ship or structure as both are viewed by the operator. Therefore, equipment that is to the operator’s left as he or she faces the control station shall appear on the left of the control panel or console, and equipment to the right shall appear on the right side of the console or panel. This “spatial relationship” between the real world and the controls and displays that are associated with the equipment and systems of that world is extremely important in the design of ships and maritime structures.
4.2.3
Users develop behavioral patterns based on their cultural experiences. Designing a ship or structure that ignores or violate those culturally derived behavior patterns will inevitably increase risks of user error.
4.3
Conflicts—
Where conflicts exist between the design criteria contained in this practice and other sources of ergonomic design criteria, this practice should prevail except where the conflicting criteria were produced by a regulatory authority
4.4
Coverage—
The design of vessels, structures, systems, subsystems, and equipment shall use the design criteria contained herein to provide the following:
4.4.1
Safe atmospheric conditions including temperature and humidity;
4.4.2
Limits on acoustic noise and vibration that will prevent performance degradation and physiological damage;
4.4.3
Space for personnel, their equipment, and free volume for the movements and activities they are required to perform for operational and maintenance tasks under both normal and emergency conditions;
4.4.4
Physical, visual, auditory, and other communication links between individual personnel and between personnel and their equipment under both normal and emergency conditions;
4.4.5
Efficient arrangement of operation and maintenance workplaces, equipment, structural elements, controls, and displays;
4.4.6
Natural or artificial illumination at levels suitable to perform all operational and maintenance tasks under both normal and emergency conditions;
4.4.7
Safe passageways, hatches, stairs, ladders, walkways, platforms, ramps, and other provisions for ingress, egress, and passage under both normal and emergency conditions;
4.4.8
Provision for protective equipment and clothing, systems, equipment, vessels, and structures that are designed to be operated and maintained by personnel wearing the equipment and clothing;
4.4.9
Compatibility of control/display interfaces with human information processing capability;
4.4.10
Immediate, accurate, and pertinent feedback to the operator of equipment or system performance after each control movement or action taken by the operator;
4.4.11
Designs that satisfy human behavioral needs such as spatial relationships, consistency, homeostasis, and cultural and equipment expectations;
4.4.12
Provision for labels, hazard signage, instructions, and procedures that are clear, concise, and understandable;
4.4.13
Provision for fail-safe designs in those areas in which failure can disable a vital system or cause catastrophic damage to equipment, injury to personnel, or loss of mission capability;
4.4.14
Designs that minimize potential human error incidence in the operation and maintenance of the system, particularly under conditions of stress and designs that ensure that errors, having been committed, can be corrected in time (the design is error tolerant);
4.4.15
Designs that minimize training time and costs and encourage simplicity so as to reduce personnel special skills or innate abilities required to operate or maintain them;
4.4.16
Designs that minimize the adverse impact of ship motion on human performance and health and safety; and
4.4.17
Designs that provide for safe and efficient operation and maintenance by user populations from all geographical regions of the maritime world.
4.5
Standardization—
Controls, displays, markings, coding, labeling, and arrangement schemes for equipment and panel layouts shall be uniform for those items or designs that appear more than once on the vessel or structure. Human-machine interfaces shall exhibit common design approaches based on conventions and conformance to operator and maintainer expectations.
4.6
Off-the-Shelf Equipment—
One criterion for selecting off-the-shelf commercial or government-furnished equipment should be the degree to which the equipment conforms to the design criteria of this practice. Where off-the-shelf equipment requires modification to interface with other equipment, the modification should be designed to comply with this practice.
4.7
Minimize Personnel—
The design objective of the vessel or structure, equipment, systems, and subsystems shall be to reduce the number of personnel involved, especially simultaneously, in completing a particular task. Another design objective shall be to optimize ship or system manning, defined as the minimum number of personnel consistent with human performance, workload and safety requirements, reliability, affordability, and risk constraints.
4.8
Completeness—
It is realized that no design guide or practice can cover every design requirement that might occur through the course of a ship or maritime structure’s evolution. It is recognized that there will be occurrences in which a particular design requirement may have to be interpreted from the data that do exist. There may also be occasions in which design criteria may have to be acquired from a source other than this practice. When those occurrences arise, it is important that assistance be provided by trained human factors engineering (HFE) professionals familiar with this, and other, maritime-oriented design guidelines and standards and experienced in the application of these guidelines to the design of ships and maritime structures.
FIG. 1
Control Movement Expectations