首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E1249-15(2021)
到馆提醒
收藏跟踪
购买正版
Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources 使用Co-60源的硅电子器件的辐射硬度测试中最小化剂量误差的标准实践
发布日期: 2021-02-01
1.1 本规程涵盖了使用热释光剂量计(TLD)等剂量计来确定使用Co-60源辐照的电子设备内感兴趣区域的吸收剂量的推荐程序。Co-60源通常用于硅电子器件的吸收剂量测试。 注1: 这种吸收剂量测试有时被称为“总剂量测试”,以区别于“剂量率测试” 注2: 电离辐射对某些类型电子设备的影响可能取决于吸收剂量和吸收剂量率;也就是说,如果将设备辐照到相同的吸收剂量,效果可能不同- 不同吸收剂量率下的剂量水平。本规程不包括吸收剂量率效应,但应在辐射硬度试验中考虑。 1.2 电子器件中吸收剂量测量的主要潜在误差来自材料界面附近的非平衡能量沉积效应。 1.3 给出了材料界面附近吸收剂量增强效应的信息。强调了这种效应对Co-60光子能谱中低能成分的敏感性。 1.4 简要介绍了典型的Co-60光源,特别强调了此类光源输出的光子能谱中存在低能成分。 1.5 给出了使用过滤最小化Co-60源光子能谱的低能成分的程序。建议使用过滤箱来实现这种过滤。 1.6 给出了有关吸收剂量增强效应的信息,该效应取决于器件相对于Co-60源的方向。 1.7 频谱过滤和适当设备定向的使用提供了一个辐射环境,由此可以在定义的误差范围内计算电子设备敏感区域中的吸收剂量,而无需详细了解设备结构或光源的光子能谱,因此,无需了解吸收剂量的详细信息- 剂量增强效应。 1.8 本规程的建议主要适用于电子设备的零件测试。电子电路板和电子系统测试可能会引入使用此处推荐的方法无法充分处理的问题。 1.9 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.10 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 4.1 将Co-60硬度测试分为五个部分: 4.1.1 平衡吸收剂量应使用剂量计(如TLD)进行测量,该剂量计位于被测装置附近。或者,可以在装置辐照之前或之后在装置位置辐照剂量计。 4.1.2 由剂量计测量的该吸收剂量应转换为受试装置内关键区域内相关材料的平衡吸收剂量,例如二氧化硅 2. MOS器件的栅氧化层。 4.1.3 应考虑对吸收剂量增强效应进行校正。 这种校正取决于撞击被测设备的光子能量。 4.1.4 应在临界区域(例如,中提到的栅极氧化物)的吸收剂量之间建立相关性 4.1.2 )以及一些重要的电学效应(如硅/二氧化硅上捕获的电荷) 2. 界面,表现为阈值电压的变化)。 4.1.5 然后,应从测试结果推断出被测设备在实际操作条件下的预期结果。 注5: 中讨论的测试部分 4.1.2 和 4.1.3 是本实践的主题。主题 4.1.1 在实践等其他标准中涵盖和引用 E668 和ICRU报告14。中讨论的测试部分 4.1.4 和 4.1.5 不在本惯例范围内。 4.2 光谱中的低能成分- 一些初级Co-60伽马射线(1.17和1.33 MeV)通过Co-60源结构内的康普顿散射、位于源和被测器件之间的材料内以及位于器件之外但有助于后向散射的材料内产生低能光子。由于这些效应的复杂性,撞击器件的光子能谱通常不为人所知。这一点将在第节中进一步讨论 5. 和 附录X1 . 存在低- 入射光谱中的能量光子会导致剂量测量误差。本实施规程定义了应尽量减少剂量测定误差的测试程序,而无需了解光谱。这些推荐程序在中进行了讨论 4.5 , 4.6 部分 7. 和 附录X5 . 4.3 器件材料中平衡吸收剂量的转换- 从剂量计材料(如CaF)中测量的吸收剂量转换而来 2. TLD)的等效吸收剂量 2. 器件栅氧化层厚度)取决于入射光子能谱。然而,如果简化假设所有入射光子都具有初级Co的能量- 然后,可以使用剂量计和设备材料的能量吸收系数的列表值,将剂量计中的吸收剂量转换为受试设备中的吸收剂量。如果这种简化是适当的,则其用于确定平衡吸收剂量所产生的误差通常小于5 % (参见 6.3 ). 4.4 吸收剂量增强效应- 如果原子序数较高的材料与原子序数较低的材料相邻,则界面附近区域中的能量沉积是入射光子能谱、材料成分以及光源和吸收器的空间排列的复杂函数。 使用中概述的程序无法充分确定此类界面附近的吸收剂量 4.3 . 在异常情况下,由于未能考虑这些影响而产生的错误可能超过五倍。由于微电子器件的特点是包含厚度为数十纳米的不同材料层,因此吸收剂量增强效应是此类器件辐照的一个典型问题(见 6.1 和 附录X2 ). 4.5 最小化吸收剂量增强效应- 在某些情况下,可以通过硬化光谱来最小化吸收剂量增强效应。硬化是通过使用高原子序数吸收剂来去除光谱的低能成分,并通过最小化低原子序数材料的数量和接近程度来减少康普顿散射引起的光谱软化来实现的(见第6节和第7节)。 4.6 剂量测定误差限值- 要通过计算方法纠正吸收剂量增强,需要了解入射光子能谱和被测装置的详细结构。测量吸收剂量增强需要模拟辐照条件和器件几何形状的方法。这种修正对于常规硬度测试是不切实际的。但是,如果第节中规定的方法 7. 用于最小化吸收剂量增强效应,由于没有对这些效应进行校正而产生的误差可以保持在许多用户可以接受的范围内。第节给出了典型情况下这些误差界的估计 7. 和 附录X5 . 4.7 非硅器件的应用- 本实践的材料主要针对硅基固态电子器件。此处介绍的材料和建议的应用应谨慎地应用于砷化镓和其他类型的器件。
1.1 This practice covers recommended procedures for the use of dosimeters, such as thermoluminescent dosimeters (TLD's), to determine the absorbed dose in a region of interest within an electronic device irradiated using a Co-60 source. Co-60 sources are commonly used for the absorbed dose testing of silicon electronic devices. Note 1: This absorbed-dose testing is sometimes called “total dose testing” to distinguish it from “dose rate testing.” Note 2: The effects of ionizing radiation on some types of electronic devices may depend on both the absorbed dose and the absorbed dose rate; that is, the effects may be different if the device is irradiated to the same absorbed-dose level at different absorbed-dose rates. Absorbed-dose rate effects are not covered in this practice but should be considered in radiation hardness testing. 1.2 The principal potential error for the measurement of absorbed dose in electronic devices arises from non-equilibrium energy deposition effects in the vicinity of material interfaces. 1.3 Information is given about absorbed-dose enhancement effects in the vicinity of material interfaces. The sensitivity of such effects to low energy components in the Co-60 photon energy spectrum is emphasized. 1.4 A brief description is given of typical Co-60 sources with special emphasis on the presence of low energy components in the photon energy spectrum output from such sources. 1.5 Procedures are given for minimizing the low energy components of the photon energy spectrum from Co-60 sources, using filtration. The use of a filter box to achieve such filtration is recommended. 1.6 Information is given on absorbed-dose enhancement effects that are dependent on the device orientation with respect to the Co-60 source. 1.7 The use of spectrum filtration and appropriate device orientation provides a radiation environment whereby the absorbed dose in the sensitive region of an electronic device can be calculated within defined error limits without detailed knowledge of either the device structure or of the photon energy spectrum of the source, and hence, without knowing the details of the absorbed-dose enhancement effects. 1.8 The recommendations of this practice are primarily applicable to piece-part testing of electronic devices. Electronic circuit board and electronic system testing may introduce problems that are not adequately treated by the methods recommended here. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 Division of the Co-60 Hardness Testing into Five Parts: 4.1.1 The equilibrium absorbed dose shall be measured with a dosimeter, such as a TLD, located adjacent to the device under test. Alternatively, a dosimeter may be irradiated in the position of the device before or after irradiation of the device. 4.1.2 This absorbed dose measured by the dosimeter shall be converted to the equilibrium absorbed dose in the material of interest within the critical region within the device under test, for example the SiO 2 gate oxide of an MOS device. 4.1.3 A correction for absorbed-dose enhancement effects shall be considered. This correction is dependent upon the photon energy that strikes the device under test. 4.1.4 A correlation should be made between the absorbed dose in the critical region (for example, the gate oxide mentioned in 4.1.2 ) and some electrically important effect (such as charge trapped at the Si/SiO 2 interface as manifested by a shift in threshold voltage). 4.1.5 An extrapolation should then be made from the results of the test to the results that would be expected for the device under test under actual operating conditions. Note 5: The parts of a test discussed in 4.1.2 and 4.1.3 are the subject of this practice. The subject of 4.1.1 is covered and referenced in other standards such as Practice E668 and ICRU Report 14. The parts of a test discussed in 4.1.4 and 4.1.5 are outside the scope of this practice. 4.2 Low-Energy Components in the Spectrum— Some of the primary Co-60 gamma rays (1.17 and 1.33 MeV) produce lower energy photons by Compton scattering within the Co-60 source structure, within materials that lie between the source and the device under test, and within materials that lie beyond the device but contribute to backscattering. As a result of the complexity of these effects, the photon energy spectrum striking the device usually is not well known. This point is further discussed in Section 5 and Appendix X1 . The presence of low-energy photons in the incident spectrum can result in dosimetry errors. This practice defines test procedures that should minimize dosimetry errors without the need to know the spectrum. These recommended procedures are discussed in 4.5 , 4.6 , Section 7 , and Appendix X5 . 4.3 Conversion to Equilibrium Absorbed Dose in the Device Material— The conversion from the measured absorbed dose in the material of the dosimeter (such as the CaF 2 of a TLD) to the equivalent absorbed dose in the material of interest (such as the SiO 2 of the gate oxide of a device) is dependent on the incident photon energy spectrum. However, if the simplifying assumption is made that all incident photons have the energies of the primary Co-60 gamma rays, then the conversion from absorbed dose in the dosimeter to that in the device under test can be made using tabulated values for the energy absorption coefficients for the dosimeter and device materials. Where this simplification is appropriate, the error incurred by its use to determine equilibrium absorbed dose is usually less than 5 % (see 6.3 ). 4.4 Absorbed-Dose Enhancement Effects— If a higher atomic number material lies adjacent to a lower atomic number material, the energy deposition in the region adjacent to the interface is a complex function of the incident photon energy spectrum, the material composition, and the spatial arrangement of the source and absorbers. The absorbed dose near such an interface cannot be adequately determined using the procedure outlined in 4.3 . Errors incurred by failure to account for these effects may, in unusual cases, exceed a factor of five. Because microelectronic devices characteristically contain layers of dissimilar materials with thicknesses of tens of nanometres, absorbed-dose enhancement effects are a characteristic problem for irradiation of such devices (see 6.1 and Appendix X2 ). 4.5 Minimizing Absorbed-Dose Enhancement Effects— Under some circumstances, absorbed-dose enhancement effects can be minimized by hardening the spectrum. Hardening is accomplished by the use of high atomic number absorbers to remove low energy components of the spectrum, and by minimizing the amount and proximity of low atomic number material to reduce softening of the spectrum by Compton scattering (see Sections 6 and 7). 4.6 Limits of the Dosimetry Errors— To correct for absorbed-dose enhancement by calculational methods would require a knowledge of the incident photon energy spectrum and the detailed structure of the device under test. To measure absorbed-dose enhancement would require methods for simulating the irradiation conditions and device geometry. Such corrections are impractical for routine hardness testing. However, if the methods specified in Section 7 are used to minimize absorbed-dose enhancement effects, errors due to the absence of a correction for these effects can be kept within bounds that may be acceptable for many users. An estimate of these error bounds for representative cases is given in Section 7 and Appendix X5 . 4.7 Application to Non-Silicon Devices— The material of this practice is primarily directed toward silicon based solid state electronic devices. The application of the material and recommendations presented here should be applied to gallium arsenide and other types of devices only with caution.
分类信息
关联关系
研制信息
归口单位: E10.07
相似标准/计划/法规