1.1
This test method covers the determination of the abrasion resistance of flexible non-conductive films and packaging materials using a weighted stylus that wears completely through a film by oscillating or reciprocating back and forth along a linear path until an electrical circuit is completed shutting down the test.
1.2
Units—
The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
Materials such as engineered thermoplastic films are often used for flexible barrier packaging. However, handling and transportation can cause abrasion to the packaging film and possibly compromise the integrity of the contents (for example, sterility of a medical device). This test method provides a comparative ranking of material performance that can be used as an indication of relative end-use performance.
5.2
The resistance of material surfaces to abrasion, as measured on a testing machine under laboratory conditions, is only one of several factors contributing to wear performance or durability as experienced in the actual use of the material. While abrasion resistance and durability are frequently related, the relationship varies with different end uses and different factors may be necessary in any calculation of predicted durability from specific abrasion data.
5.3
The resistance of material surfaces to abrasion may be affected by factors including test conditions of temperature and humidity, type of abradant, pressure between the specimen and abradant, mounting or tension of the specimen, and type, kind, or amount of finishing materials such as coatings or additives. Other causes of variation include local material movement during testing, material direction alignment, material characteristics, and mandrel and stylus wear. For consistency, samples to be evaluated under special environmental conditions shall be conditioned under those same conditions. It is important that the test instrument be shown to operate properly under special environmental conditions.
5.4
This test method may not be suitable for all films, including the following cases:
5.4.1
Films that stretch and generate a ripple in the abraded region during testing,
5.4.2
Films that have a thickness greater than 0.25 mm (0.010 in.), or are of such rigidity that forming over the mandrel would cause internal stresses that weaken the film, and
5.4.3
Conductive films.