首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM F2391-22
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Measuring Package and Seal Integrity Using Helium as the Tracer Gas 用氦气作为示踪气体测量包装和密封完整性的标准试验方法
发布日期: 2022-11-15
1.1 该测试方法包括几个程序,可用于测量各种包装类型和包装形式以及密封/封闭类型的整体包装和密封屏障性能。该方法的基本要素包括: 1.1.1 氦气(用作示踪气体), 1.1.2 氦检漏仪(质谱仪),以及 1.1.3 包装/产品专用测试夹具。 1.1.4 氦气泄漏检测的大多数应用都是破坏性的,因为氦气需要在封装密封后注入封装。然后,注射部位需要外部密封/修补,这通常会破坏其可销售性。 或者,如果可以在密封之前将氦气加入顶部空间,则该方法可以是非破坏性的,因为需要完成的只是简单地检测密封包装中是否有氦气逸出。 1.2 描述了两种程序:;然而,第节中的支持数据 14 仅反映程序B(真空模式)。另一种选择,即嗅探器模式,已被证明是许多应用的一种有价值的程序,但由于操作员进行测试的方式,例如包装是否受到挤压,与较少的大泄漏相比,多个小泄漏的影响,背景氦气浓度,包装渗透性和扫描速度,可能具有更多的可变性。 预计将进行进一步的测试,以量化该程序的可变性,但本版本中未包含。 1.2.1 程序A:嗅探器模式- 对包装进行外部扫描,以检查是否有氦气泄漏到大气或夹具中。 1.2.2 步骤B:真空模式- 将含氦包装置于封闭的夹具中。抽真空后,检测泄漏到封闭夹具(捕获体积)中的氦气。通常,夹具是为测试中的特定包装定制的。 1.3 该方法的灵敏度可从以下检测范围: 1.3.1 大泄漏-10 -2 帕·米 3. /s至10 -5 帕·米 3. /s(10 –1 cc/sec/atm至10 -4 cc/sec/atm)。 1.3.2 中度泄漏-10 -5 帕·米 3. /s至10 -7 帕·米 3. /s(10 -4 cc/sec/atm至10 -6 cc/sec/atm)。 1.3.3 细微泄漏-10 -7 帕·米 3. /s至10 -9 帕·米 3. /s(10 -6 cc/sec/atm至10 -8 cc/sec/atm)。 1.3.4 超细泄漏-10 -9 帕·米 3. /s至10 -11 帕·米 3. /s(10 -8 cc/sec/atm至10 -10 cc/sec/atm)。 注1: 从cc/sec/atm转换为Pa·m 3. /s通过乘以0.1来实现。 1.4 “大”、“中”、“细”和“超细”只是相对术语,并不意味着任何泄漏率的可接受性。单个应用程序决定了所需的完整性级别。 对于许多包装应用,只有“大泄漏”被认为是不可接受的,而检测较小泄漏的能力无关紧要。本方法中提到的所有泄漏率都是基于实际条件(基于氦气分压)到一个大气压差和标准温度条件的转换。 1.5 该方法可适用于任何包装类型: 1.5.1 柔性、半刚性或刚性。 1.5.2 可渗透的或不可渗透的。 1.5.3 由可渗透和不可渗透组件组成的包装,例如,成型铝泡和其他高阻隔铝包装、药筒和注射器。 1.6 该方法支持数据中报告的灵敏度与样品中氦气的可检测性有关,而不是包装形式的函数。 1.7 该方法不适用于透气或多孔包装。 1.8 根据使用的程序,获得的结果可以是定性、半定量或定量的。 1.9 测试夹具设计不在本方法的范围内,除非注意不同的应用需要不同的设计(具有不同的包装类型和包装完整性要求)。此外,夹具的选择和设计将基于在制造过程中进行测试的位置(换句话说,质量控制与研究)。 1.10 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。 1.11 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《国际标准、指南和建议制定原则决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 5.1 试验方法中所述的真空、气泡试验方法 第3078页 和其他地方描述的各种泄漏检测方法(试验方法 D4991型 指导 第432页 ,测试方法 第493页 ,测试方法 第498页 ,测试方法 第499页 和测试方法 第1603页 )已成功地在各种行业和应用中广泛使用,以确定给定包装是否为“泄漏物”。必须考虑任何选定泄漏测试方法的灵敏度,以确定其在特定情况下的适用性。 5.2 本测试方法中介绍的程序允许用户以足够的灵敏度进行包装和密封完整性测试,以量化先前定义的中等至精细密封范围内的密封。 5.3 通过采用密封隔离泄漏测试夹具,由各种材料制成的包装可以在全范围的密封性能要求下进行测试。这些夹具的设计超出了本方法的范围。 5.4 这些密封/包装完整性测试程序可用于: 5.4.1 设计工具, 5.4.2 对于工装鉴定, 5.4.3 过程设置, 5.4.4 过程验证工具, 5.4.5 质量保证监控,或 5.4.6 研究和开发。
1.1 This test method includes several procedures that can be used for the measurement of overall package and seal barrier performance of a variety of package types and package forms, as well as seal/closure types. The basic elements of this method include: 1.1.1 Helium (employed as tracer gas), 1.1.2 Helium leak detector (mass spectrometer), and 1.1.3 Package/product-specific test fixtures. 1.1.4 Most applications of helium leak detection are destructive, in that helium needs to be injected into the package after the package has been sealed. The injection site then needs to be sealed/patched externally, which often destroys its saleability. Alternatively, if helium can be incorporated into the headspace before sealing, the method can be non-destructive because all that needs to be accomplished is to simply detect for helium escaping the sealed package. 1.2 Two procedures are described; however the supporting data in Section 14 only reflects Procedure B (Vacuum Mode). The alternative, Sniffer Mode, has proven to be a valuable procedure for many applications, but may have more variability due to exactly the manner that the operator conducts the test such as whether the package is squeezed, effect of multiple small leaks compared to fewer large leaks, background helium concentration, package permeability and speed at which the scan is conducted. Further testing to quantify this procedure’s variability is anticipated, but not included in this version. 1.2.1 Procedure A: Sniffer Mode— the package is scanned externally for helium escaping into the atmosphere or fixture. 1.2.2 Procedure B: Vacuum Mode— the helium containing package is placed in a closed fixture. After drawing a vacuum, helium escaping into the closed fixture (capture volume) is detected. Typically, the fixtures are custom made for the specific package under test. 1.3 The sensitivity of the method can range from the detection of: 1.3.1 Large leaks—10 -2 Pa·m 3 /s to 10 -5 Pa·m 3 /s (10 –1 cc/sec/atm to 10 -4 cc/sec/atm). 1.3.2 Moderate leaks—10 -5 Pa·m 3 /s to 10 -7 Pa·m 3 /s (10 -4 cc/sec/atm to 10 -6 cc/sec/atm). 1.3.3 Fine leaks—10 -7 Pa·m 3 /s to 10 -9 Pa·m 3 /s (10 -6 cc/sec/atm to 10 -8 cc/sec/atm). 1.3.4 Ultra-Fine leak—10 -9 Pa·m 3 /s to 10 -11 Pa·m 3 /s (10 -8 cc/sec/atm to 10 -10 cc/sec/atm). Note 1: Conversion from cc/sec/atm to Pa·m 3 /s is achieved by multiplying by 0.1. 1.4 The terms large, moderate, fine and ultra-fine are relative terms only and do not imply the acceptability of any leak rate. The individual application dictates the level of integrity needed. For many packaging applications, only “large leaks” are considered unacceptable and the ability to detect smaller leaks is immaterial. All leak rates referred to in this method are based on conversion of actual conditions (based on partial pressure of helium) to one atmosphere pressure differential and standard temperature conditions. 1.5 The method may have applicability to any package type: 1.5.1 Flexible, semi-rigid, or rigid. 1.5.2 Permeable or impermeable. 1.5.3 Packages comprised of both permeable and impermeable components, for example, formed aluminum blisters and other high barrier aluminum packaging, cartridges, and syringes. 1.6 The sensitivities reported in the supporting data for this method pertain to the detectability of helium emanating from the sample and are not a function of the packaging form. 1.7 The method is not applicable to breathable or porous packaging. 1.8 The results obtained can be qualitative, semi-quantitative or quantitative depending on the procedure used. 1.9 Test fixture design is not within the scope of this method except to note that different designs will be needed for different applications (which have different package types and package integrity requirements). Furthermore, the fixture selection and design will be based on where the testing is to be conducted within the manufacturing process (in other words, quality control versus research). 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 The vacuum, bubble test method, as described in Test Method D3078 , and various other leak detection methods described elsewhere (Test Method D4991 , Guide E432 , Test Method E493 , Test Method E498 , Test Method E499 , and Test Method E1603 ) have been successfully used widely in various industries and applications to determine that a given package is or is not a “leaker.” The sensitivity of any selected leak test method has to be considered to determine its applicability to a specific situation. 5.2 The procedures presented in this test method allow the user to carry out package and seal integrity testing with sufficient sensitivity to quantify seals in the previously defined moderate to fine seal ranges. 5.3 By employing seal-isolating leak testing fixtures, packages constructed of various materials can be tested in the full range of seal performance requirements. Design of these fixtures is beyond the scope of this method. 5.4 These seal/package integrity test procedures can be utilized as: 5.4.1 A design tool, 5.4.2 For tooling qualification, 5.4.3 Process setup, 5.4.4 Process validation tool, 5.4.5 Quality assurance monitoring, or 5.4.6 Research and development.
分类信息
关联关系
研制信息
归口单位: F02.40
相似标准/计划/法规
现行
ASTM F1886/F1886M-16(2024)
Standard Test Method for Determining Integrity of Seals for Flexible Packaging by Visual Inspection
通过目视检查确定软包装密封完整性的标准试验方法
2024-11-01
现行
ASTM F3004-13(2020)
Standard Test Method for Evaluation of Seal Quality and Integrity Using Airborne Ultrasound
使用机载超声波评估密封质量和完整性的标准测试方法
2020-11-15
现行
KS T 1340(2018 Confirm)
제한판 내의 내부 공기압을 이용한 연포장 밀봉의 파열 시험방법
在限制板内部使用内部空气加压的柔性包装密封件爆破试验的标准试验方法
2013-11-11
现行
KS T 1340(2023 Confirm)
제한판 내의 내부 공기압을 이용한 연포장 밀봉의 파열 시험방법
使用约束板内的内部空气加压对柔性包装密封件进行爆裂试验的标准试验方法
2013-11-11
现行
ASTM F2054/F2054M-13(2024)
Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
在限制板内部使用内部空气加压的柔性包装密封件爆破试验的标准试验方法
2024-11-01
现行
ASTM F2638-22
Standard Test Method for Using Aerosol Filtration for Measuring the Performance of Porous Packaging Materials as a Surrogate Microbial Barrier
用气溶胶过滤测量多孔包装材料作为替代微生物屏障性能的标准试验方法
2022-05-01
现行
ASTM D2063/D2063M-24
Standard Test Methods for Measurement of Torque Retention for Packages with Continuous Thread Closures Using Non-Automated (Manual) Torque Testing Equipment
使用非自动(手动)扭矩测试设备测量连续螺纹封闭包装扭矩保持力的标准试验方法
2024-05-01
现行
ASTM D3382-22
Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques
用电桥技术测量局部放电(电晕)产生的能量和综合电荷转移的标准试验方法
2022-01-01
现行
ASTM D7860-14(2022)
Standard Test Methods for Measurement of Torque Retention for Child Resistant and Non-Child Resistant Packages with Continuous Thread Closures Using Automated Torque Testing Equipment
使用自动扭矩测试设备测量带连续螺纹封闭的防儿童和非防儿童包装的扭矩保持力的标准试验方法
2022-10-01
现行
ASTM D8059-19(2022)
Standard Test Method for Rubber Compounds—Measurement of Unvulcanized Dynamic Strain Softening (Payne Effect) Using Sealed Cavity Rotorless Shear Rheometers
用密封腔无转子剪切流变仪测量橡胶化合物未硫化动态应变软化(Payne效应)的标准试验方法
2022-11-01