1.1
这是火灾测试响应标准。
1.2
本试验方法提供了一种测量因使用不超过25 mm(1 in.)的基本平整材料、产品或组件(包括表面光洁度)而产生的烟雾遮蔽的方法厚度,水平方向,暴露于指定水平的热辐照度,在单个密闭室中,在有引燃火焰的情况下,从锥形加热器。可选测试模式不包括引燃火焰。
注1:
本试验方法使用的设备在技术上等同于ISO 5659中使用的设备-
2和NFPA 270。
1.3
从该测试方法中获得的主要火灾测试响应特性是测试样本中烟雾的比光密度,该比光密度是10分钟内时间的函数。
1.4
使用该测试方法可测量的可选火灾测试响应特性是质量光密度(参见
附件A1
),即烟雾的比光密度除以试样在试验过程中损失的质量。
1.5
从本试验中获得的耐火试验响应特性特定于测试样本,其形式和厚度均为测试样本,并非材料、产品或组件的固有特性。
1.6
本试验方法不提供试样在本试验方法规定条件以外的火灾条件下的防火性能信息。有关此测试方法的限制,请参阅
5.5
.
1.7
在裁判决定中使用国际单位制;看见
IEEE/ASTM SI-10
. 括号中的英寸-磅单位仅供参考。
1.8
本试验方法用于测量和描述材料、产品或组件在受控条件下对热量和火焰的响应,但其本身并不包括在实际火灾条件下对材料、产品或组件进行火灾危险或火灾风险评估所需的所有因素。
1.9
产品和材料的防火测试具有固有的危险性,在进行这些测试时,应对人员和财产采取适当的保护措施。本试验方法可能涉及危险材料、操作和设备。另请参见
6.2.1.2
部分
7.
和
11.7.2
.
1.10
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.11
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
5.1
本试验方法提供了一种测定材料、产品或组件样品在规定暴露条件下产生的烟雾比光密度的方法。本试验确定的数值特定于所测试形状和厚度的试样,不是所测试材料、产品或组件的固有基本特性。
5.2
本试验方法使用光度标度测量烟雾遮蔽,其类似于人类视觉的光密度标度。该测试方法不测量与视觉相关的生理方面。
5.3
目前,不存在预测试样在规定以外的任何火灾条件下暴露于热或火焰时产生的烟雾遮蔽的依据。此外,与许多烟雾遮蔽试验方法一样,尚未建立与其他试验方法测量值的相关性。
5.4
电流烟密度室试验,试验方法
E662型
,用于地板覆盖物和轨道交通行业。烟雾遮蔽的测量对于研究人员和产品开发科学家来说非常重要。该试验方法包括对试验方法的改进
E662型
,也将提高烟雾遮蔽测量对规范制定者和产品制造商的有用性。
5.4.1
以下是该测试方法对测试方法的改进
E662型
:水平试样方向解决了垂直方向试样的熔化和火焰滴落问题;
锥形热源提供更均匀的热输入;热输入可以在高达50 kW/m的范围内变化
2.
,而不是具有25 kW/m的固定值
2.
; 并且,(可选)称重传感器允许计算质量光密度,其将测量的烟雾遮蔽火灾试验响应特性与质量损失相关联。
5.5
局限性
8.
:
5.5.1
试验过程中的以下行为导致该试验无效:将试样从受控辐照度区移开,以接触引燃燃烧器或引燃火焰;在燃烧模式下引燃火焰熄灭(即使是短时间);
熔融材料溢出试样架;或者,在非燃烧模式下自燃。
5.5.2
与小规模试验方法中的常见情况一样,从该试验方法中获得的结果已证明受试样几何形状、表面方向、厚度(整体或单个层)、质量和成分变化的影响。
5.5.3
测试结果仅适用于测试样本的厚度。不存在简单的数学公式来计算不同于测试厚度的试样厚度下的试样比光密度。
文献中包含一些关于光密度和试样厚度之间关系的信息
(
1.
)
.
9
5.5.4
由于相对位置会影响辐射热流,因此本试验方法获得的结果受样本和辐射计相对于辐射热源位置变化的影响(另请参见
附录X2
).
5.5.5
试验结果已证明对试验箱中残留物的过度累积非常敏感,残留物作为额外的绝缘体,倾向于减少通常预期的气溶胶冷凝,从而提高测量的比光密度(见
5.5.8.3
和
11.1.2
).
5.5.6
获得的测量结果也证明对调节差异很敏感(见第节)
10
). 许多材料、产品或组件,如一些地毯、木材、塑料或纺织品,即使在强制通风调节室中也需要很长时间才能达到平衡(恒定重量)。该灵敏度反映了样品的固有自然可变性,并不特定于测试方法。
5.5.7
在该程序中,样本经受一组或多组特定的实验室测试条件。如果替换了不同的测试条件或结束-
使用条件发生变化时,不一定能够通过或通过本试验方法预测测得的火灾试验响应特性的变化;因此,结果仅适用于本程序中描述的火灾试验暴露条件。
5.5.8
该试验方法解决了与其他密闭室试验方法(如试验方法)相关的一些限制
E662型
(
2-
6.
)
(参见
5.4.1
). 该试验方法保留了与密闭室试验相关的一些限制,详见
5.5.8.1 –
5.5.8.5
.
5.5.8.1
通过本试验方法获得的比光密度与试样在试验过程中损失的质量相关的信息只能通过使用(可选)称重传感器来确定质量光密度(见
附件A1
).
5.5.8.2
所有样本燃烧时都会消耗氧气。一些样品(尤其是快速燃烧的样品和重且多层的样品)的烟雾产生受到燃烧室内氧浓度的影响。因此,如果在实验结束之前,燃烧室内的空气变得缺氧,某些样品的燃烧可能停止;因此,那些离辐射源最远的层可能不会燃烧。
5.5.8.3
壁的存在通过燃烧颗粒的沉积导致损失。
5.5.8.4
测试过程中,烟尘和其他固体或液体燃烧产物沉淀在光学表面上,导致测量的烟雾密度可能高于悬浮烟雾引起的烟雾密度。
5.5.8.5
本试验方法不进行动态测量,因为烟雾只是继续填充密闭室;因此,获得的烟雾遮蔽值并不代表明火的条件。
1.1
This is a fire-test-response standard.
1.2
This test method provides a means of measuring smoke obscuration resulting from subjecting essentially flat materials, products, or assemblies (including surface finishes), not exceeding 25 mm (1 in.) in thickness, in a horizontal orientation, exposed to specified levels of thermal irradiance, from a conical heater, in the presence of a pilot flame, in a single closed chamber. Optional testing modes exclude the pilot flame.
Note 1:
The equipment used for this test method is technically equivalent to that used in ISO 5659-2 and in NFPA 270.
1.3
The principal fire-test-response characteristic obtained from this test method is the specific optical density of smoke from the specimens tested, which is obtained as a function of time, for a period of 10 min.
1.4
An optional fire-test-response characteristic measurable with this test method is the mass optical density (see
Annex A1
), which is the specific optical density of smoke divided by the mass lost by the specimens during the test.
1.5
The fire-test-response characteristics obtained from this test are specific to the specimen tested, in the form and thickness tested, and are not an inherent property of the material, product, or assembly.
1.6
This test method does not provide information on the fire performance of the test specimens under fire conditions other than those conditions specified in this test method. For limitations of this test method, see
5.5
.
1.7
Use the SI system of units in referee decisions; see
IEEE/ASTM SI-10
. The inch-pound units given in parentheses are for information only.
1.8
This test method is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.
1.9
Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests. This test method may involve hazardous materials, operations, and equipment. See also
6.2.1.2
, Section
7
, and
11.7.2
.
1.10
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.11
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
This test method provides a means for determining the specific optical density of the smoke generated by specimens of materials, products, or assemblies under the specified exposure conditions. Values determined by this test are specific to the specimen in the form and thickness tested and are not inherent fundamental properties of the material, product, or assembly tested.
5.2
This test method uses a photometric scale to measure smoke obscuration, which is similar to the optical density scale for human vision. The test method does not measure physiological aspects associated with vision.
5.3
At the present time no basis exists for predicting the smoke obscuration to be generated by the specimens upon exposure to heat or flame under any fire conditions other than those specified. Moreover, as with many smoke obscuration test methods, the correlation with measurements by other test methods has not been established.
5.4
The current smoke density chamber test, Test Method
E662
, is used by specifiers of floor coverings and in the rail transportation industries. The measurement of smoke obscuration is important to the researcher and the product development scientist. This test method, which incorporates improvements over Test Method
E662
, also will increase the usefulness of smoke obscuration measurements to the specifier and to product manufacturers.
5.4.1
The following are improvements offered by this test method over Test Method
E662
: the horizontal specimen orientation solves the problem of melting and flaming drips from vertically oriented specimens; the conical heat source provides a more uniform heat input; the heat input can be varied over a range of up to 50 kW/m
2
, rather than having a fixed value of 25 kW/m
2
; and, the (optional) load cell permits calculations to be made of mass optical density, which associates the smoke obscuration fire-test-response characteristic measured with the mass loss.
5.5
Limitations
8
:
5.5.1
The following behavior during a test renders that test invalid: a specimen being displaced from the zone of controlled irradiance so as to touch the pilot burner or the pilot flame; extinction of the pilot flame (even for a short period of time) in the flaming mode; molten material overflowing the specimen holder; or, self-ignition in the nonflaming mode.
5.5.2
As is usual in small-scale test methods, results obtained from this test method have proven to be affected by variations in specimen geometry, surface orientation, thickness (either overall or individual layer), mass, and composition.
5.5.3
The results of the test apply only to the thickness of the specimen as tested. No simple mathematical formula exists to calculate the specific optical density of a specimen at a specimen thickness different from the thickness at which it was tested. The literature contains some information on a relationship between optical density and specimen thickness
(
1
)
.
9
5.5.4
Results obtained from this test method are affected by variations in the position of the specimen and radiometer relative to the radiant heat source, since the relative positioning affects the radiant heat flux (see also
Appendix X2
).
5.5.5
The test results have proven sensitive to excessive accumulations of residue in the chamber, which serve as additional insulators, tending to reduce normally expected condensation of the aerosol, thereby raising the measured specific optical density (see
5.5.8.3
and
11.1.2
).
5.5.6
The measurements obtained have also proven sensitive to differences in conditioning (see Section
10
). Many materials, products, or assemblies, such as some carpeting, wood, plastics, or textiles, require long periods to attain equilibrium (constant weight) even in a forced-draft conditioning chamber. This sensitivity reflects the inherent natural variability of the sample and is not specific to the test method.
5.5.7
In this procedure, the specimens are subjected to one or more specific sets of laboratory test conditions. If different test conditions are substituted or the end-use conditions are changed, it is not necessarily possible by or from this test method to predict changes in the fire-test-response characteristics measured; therefore, the results are valid only for the fire test exposure conditions described in this procedure.
5.5.8
This test method solves some limitations associated with other closed chamber test methods, such as Test Method
E662
(
2-
6
)
(see
5.4.1
). The test method retains some limitations related to closed chamber tests, as detailed in
5.5.8.1 –
5.5.8.5
.
5.5.8.1
Information relating the specific optical density obtained by this test method to the mass lost by the specimen during the test is possible only by using the (optional) load cell, to determine the mass optical density (see
Annex A1
).
5.5.8.2
All specimens consume oxygen when combusted. The smoke generation of some specimens (especially those undergoing rapid combustion and those which are heavy and multilayered) is influenced by the oxygen concentration in the chamber. Thus, if the atmosphere inside the chamber becomes oxygen-deficient before the end of the experiment, combustion may ceases for some specimens; therefore, it is possible that those layers furthest away from the radiant source will not undergo combustion.
5.5.8.3
The presence of walls causes losses through deposition of combustion particulates.
5.5.8.4
Soot and other solid or liquid combustion products settle on the optical surfaces during a test, resulting in potentially higher smoke density measurements than those due to the smoke in suspension.
5.5.8.5
This test method does not carry out dynamic measurements as smoke simply continues filling a closed chamber; therefore, the smoke obscuration values obtained do not represent conditions of open fires.