Standard Test Method for Determination of an Emission Parameter for Phthalate Esters and Other Non-Phthalate Plasticizers from Planar Polyvinyl Chloride Indoor Materials for Use in Mass Transfer Modeling Calculations
质量传递模型计算用平面聚氯乙烯室内材料中邻苯二甲酸酯和其他非邻苯二甲酸增塑剂排放参数测定的标准试验方法
发布日期:
2021-03-01
1.1
平面聚氯乙烯(乙烯基)室内材料可能包含半挥发性有机化合物(SVOC),例如邻苯二甲酸酯和其他非邻苯二甲酸增塑剂,这些物质会排放到室内空气中。表1列出了使用本标准测量的邻苯二甲酸酯和其他非邻苯二甲酸增塑剂,在本文件其余部分中称为SVOCs。
1.2
表1中列出的SVOC存在于各种产品中,但不限于平面聚氯乙烯(乙烯基)室内材料。本标准讨论了由于方法开发和测试这些材料产生的相关质量控制数据而产生的特定平面聚氯乙烯材料。
本标准中包含的材料并不表示特定聚氯乙烯平面材料相对于其他产品的SVOC源强度。
1.3
该方法描述了具有最小外露室壁的1 L环境室的设计。
1.4
该方法测量腔室中SVOC的稳态气相浓度。在特殊设计的干燥空气室中,在规定的温度、气流速度和运行时间条件下对产品样品进行测试。使用吸附剂采样管在控制流量的燃烧室排气口定期收集空气样本,然后通过热解吸进行分析-
气相色谱-质谱(TD-GC-MS)。
1.5
该方法确定了穿过材料表面的SVOC对流气相传质系数,
h
m
,根据腔室中已知的邻苯二甲酸二甲酯传质系数
(
1.
)
.
2.
1.6
该方法利用稳态气相浓度和传质系数,估计与物料相平衡的SVOC的气相浓度(
y
0
)在规定温度下。获得的
y
0
数据可用于预测实际室内环境中的排放。然而,曝光建模超出了该方法的范围。有关传质发射和曝光建模的更多信息,请参阅Little等人。
(
2.
)
、梁、徐
(
1.
,
3.
)
,郭
(
4.
)
.
1.7
气相浓度随时间变化的结果,稳态气相SVOC浓度(
y
不锈钢
),和
y
0
,仅代表测试方法中规定的条件,并且是该方法中内置假设的结果,例如源/空气界面处的瞬时平衡。结果可能无法代表在其他测试条件(即温度或流速)下收集的结果,也可能无法与其他SVOC测试方法进行比较。
1.8
以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。
1.9
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.10
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
5.1
表征建筑材料和产品挥发性有机化合物排放的传统方法(例如,测试方法
D6007年
和
D8142
; 实践
D6177
,
D6330
,
D6670
,
D6803
,
D7143
; 指导
D5116
; 和ISO 16000-6标准)使用面积比排放率(µg h)模拟室内环境中的挥发性有机化合物排放
-1
m
-2
). 这些方法适用于大多数分类为挥发性有机物的化学品,因为大多数挥发性有机物排放受内部传质过程(化学品通过材料的扩散)控制,大多数挥发性有机物吸附到室壁的程度最小。因此,室面积比排放率可以直接应用于室内环境模型。
5.2
相比之下,归类为SVOC的化学品将强烈吸附在室壁上,并受外部传质过程(通过材料表面的空气边界层迁移)控制。当用于源材料上方某些SVOC的平衡气相浓度时,由于分析物吸附到室壁,传统的室发射表征方法通常耗时数月。由于SVOC的外部传质限制,SVOC的面积比排放率(µg h
-1
m
-2
)在试验箱中测量的结果可能不同于真实室内环境中相同材料的测量结果。
为了准确模拟室内环境中的SVOC浓度,需要一种传质方法来确定与物质相平衡的气相浓度。
5.3
使用传质框架在真实环境中建模排放需要了解对流传质系数(
h
m
),材料中的初始SVOC浓度(
C
o
),材料中的扩散系数(
D
),以及材料表面正上方空气中的浓度(
y
0
). 通常,对流传质系数,
h
m
,和扩散系数,
D
,可以估计。材料中的初始浓度(
C
o
)可通过萃取法测定。EPA方法8270E和试验方法CPSC-CH-C1001-09.4可用于测定材料中邻苯二甲酸盐的体积浓度。全尺寸环境中暴露建模所需的未知传质发射参数是与材料相平衡的SVOCs的气相浓度(
y
0
). 本标准描述了快速测定的程序
y
0
用于室内平面聚氯乙烯材料中的邻苯二甲酸盐。
5.4
该方法可用于向制造商、建筑商和最终用户提供一些输入数据(
y
0
)用于评估室内平面聚氯乙烯材料对室内SVOCs浓度影响的模型以及传质暴露模型所需。
5.5
该方法假设气相和材料表面之间存在瞬时平衡。这种假设适用于各种SVOC传质排放和暴露模型(见Little等人。
(
2.
)
、梁、徐
(
1.
,
3.
)
,郭
(
4.
)
). 然而,在某些环境条件下,这种假设可能无效。
1.1
Planar polyvinyl chloride (vinyl) indoor materials can contain semi-volatile organic compounds (SVOCs), such as phthalate esters and other non-phthalate plasticizers, that can emit into indoor air. Phthalate esters and other non-phthalate plasticizers that have been measured using this standard are listed in Table 1 and are referred to as SVOCs in the remainder of this document.
1.2
The SVOCs listed in Table 1 are present in a wide range of products and not limited to planar polyvinyl chloride (vinyl) indoor materials. This standard discusses specific planar polyvinyl chloride materials due to method development and associated quality control data produced from testing these materials. The materials inclusion in this standard does not indicate the SVOC source strength of specific polyvinyl chloride planar materials relative to other products.
1.3
This method describes the design of a 1 L environmental chamber with minimal exposed chamber walls.
1.4
This method measures the steady-state gas phase concentration of SVOCs in the chamber. Samples of products are tested at specified conditions of temperature, airflow rate, and elapsed time in a specially designed chamber with dry air. Air samples are collected periodically using sorbent sampling tubes at the chamber exhausts at controlled flow rates, and then analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS).
1.5
This method determines the SVOC convective gas-phase mass transfer coefficient across the material surface,
h
m
, from the known dimethyl phthalate mass transfer coefficient in the chamber
(
1
)
.
2
1.6
Using the steady-state gas phase concentration and mass transfer coefficient, the method estimates the gas-phase concentration of SVOC in equilibrium with the material phase (
y
0
) at a specified temperature. The obtained
y
0
data can be used to predict emissions in real indoor environments. However, exposure modeling is beyond the scope of this method. For more information on mass transfer emission and exposure modeling see Little et al.
(
2
)
, Liang and Xu
(
1
,
3
)
, and Guo
(
4
)
.
1.7
The results for gas phase concentration change in the chamber with time, steady-state gas phase SVOC concentrations (
y
ss
), and
y
0
, only represent the conditions specified in the test method and are the result of assumptions built into the method such as instantaneous equilibrium at the source/air interface. The results may not be representative of those collected under other test conditions (that is, temperature or flow rate) or comparable with other SVOC test methods.
1.8
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.9
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.10
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
The conventional approach for characterizing VOC emissions from building materials and products (for example, Test Methods
D6007
and
D8142
; Practices
D6177
,
D6330
,
D6670
,
D6803
,
D7143
; Guide
D5116
; and ISO 16000-6 standards) results in modeling VOC emissions in the indoor environment using area-specific emission rates (µg h
-1
m
-2
). These approaches work for most chemicals classified as VOCs, because most VOC emissions are controlled by the internal mass transfer processes (diffusion of the chemical through the material) and most VOCs sorb to minimal extent to chamber walls. Hence, chamber area-specific emission rates can be directly applied to models of indoor environments.
5.2
In contrast, chemicals classified as SVOCs will sorb strongly to chamber walls and are controlled by the external mass transfer process (migration through the air boundary layer on the material surface). When used for the equilibrium gas phase concentration of certain SVOCs above source materials, conventional chamber emission characterization approaches are typically time-consuming taking up to several months due to sorption of analytes to chamber walls. Due to SVOC’s external mass transfer limitation, the SVOC area-specific emission rate (µg h
-1
m
-2
) measured in a test chamber can be different from that for the same material in a real indoor environment. To accurately model SVOC concentrations in indoor environments, a mass transfer approach to determine gas phase concentrations in equilibrium with the material phase is needed.
5.3
Modeling emissions in a real environment using a mass transfer framework requires knowledge of the convective mass transfer coefficient (
h
m
), the initial SVOC concentration in the material (
C
o
), the diffusion coefficient in the material (
D
), and the concentration in the air immediately above the material surface (
y
0
). Typically, the convective mass transfer coefficient,
h
m
, and diffusion coefficient,
D
, can be estimated. The initial concentration in the material (
C
o
) can be determined by means of extraction. EPA Method 8270E and Test Method CPSC-CH-C1001-09.4 can be used to determine bulk concentrations of phthalates in materials. The unknown mass transfer emission parameter required for exposure modeling in full-scale environments is the gas-phase concentration of SVOCs in equilibrium with the material phase (
y
0
). This standard describes procedures for rapidly determining
y
0
for phthalates from indoor planar polyvinyl chloride materials.
5.4
This method may be used to provide manufacturers, builders, and end users with some of the input data (
y
0
) required for models used to evaluating the impact of indoor planar, polyvinyl chloride materials on concentrations of indoor SVOCs as well as for mass transfer exposure models.
5.5
This method assumes that an instantaneous equilibrium exists between gas phase and material surface. This assumption has been made for a variety of SVOC mass transfer emission and exposure models (see Little et al.
(
2
)
, Liang and Xu
(
1
,
3
)
, and Guo
(
4
)
). However, this assumption may be invalid under some environmental conditions.