首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2855-12(2021)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Radio Communication: Non-Line-of-Sight Range 评估应急机器人功能的标准测试方法:无线电通信:非视距范围
发布日期: 2021-01-01
1.1 目的: 1.1.1 作为一套无线电通信测试方法的一部分,本测试方法的目的是定量评估遥控机器人的(见术语 E2521 )在非视线环境中执行机动和检查任务的能力。 1.1.2 机器人应具备一定的无线电通信能力,包括在非视线环境中执行机动和检查任务,以适应紧急响应的关键操作。机器人在下方障碍区域执行此类任务的能力对于应急响应操作至关重要。 该测试方法规定了一套标准的装置、程序和指标,以评估机器人/操作员执行这些任务的能力。 1.1.3 应急响应机器人应能够在视线环境、非视线环境中使用配备的无线电进行远程操作,并通过建筑物、碎石和隧道等障碍物进行信号穿透。其他功能包括在存在电磁干扰的情况下运行,并提供链路安全和数据记录。 需要标准测试方法来评估候选机器人是否满足这些要求。 1.1.4 ASTM E54.08.01机器人技术任务组规定了无线电通信测试套件,该套件由一组用于评估这些通信能力的测试方法组成。这种非视距测试方法是无线电通信测试套件的一部分。与测试方法相关的设备以可重复的方式挑战特定的机器人能力,以便于比较不同的机器人模型以及类似机器人模型的特定配置。 1.1.5 该测试方法建立了程序、装置和指标,用于指定和测试非视线环境中操作员站和测试机器人之间使用的无线电(无线)链路的能力。这些链接包括命令和控制通道以及视频、音频和其他传感器数据遥测。 1.1.6 该测试方法旨在适用于地面机器人系统和小型无人机系统(SUA),能够悬停以执行应急响应应用范围内的机动和检查任务。 1.1.7 本试验方法规定了一种仪器,首先是用于测试的基本清晰的射频通道。此外,规定了测试操作员控制单元(OCU)和机器人之间的标准视线屏障。 图1 提供了一个示例。 图1 在气带处测试制造 左图:非视线范围测试方法使用简易跑道或平坦的铺砌道路,机器人测试站放置在由堆叠的12米(40英尺)国际标准组织(ISO)海运集装箱建造的墙壁前后。 右图:机器人测试站是墙后的原型,桶上的目标用于视觉检查任务,圆形路径用于机动任务。 注1: 本标准未涉及频率协调和互操作性。这些问题应由受影响的机构(消防、警察和城市搜索和救援)解决,并写入指导紧急情况响应的标准操作程序(SOP)。 1.1.8 无线电通信测试套件量化了用于应急响应应用的机器人所需的基本无线电通信能力。 因此,基于其特定的能力需求,该测试套件的用户只能选择适用的测试方法,并且可以在测试方法中单独加权特定的测试方法或特定的指标。测试结果应共同代表应急响应机器人的整体无线电通信能力。这些测试结果可用于指导用于应急响应应用的机器人的采购规范和验收测试。 注2: 随着机器人系统的应用越来越广泛,应急响应人员可能会确定额外或先进的机器人无线电通信能力需求,以帮助他们应对紧急情况。 除了遥操作之外,他们可能还希望使用具有更高自主性的机器人,以帮助减少他们的工作量,见NIST特别出版物1011-II-1.0。此外,扩展应急响应领域中的应急响应者可能还希望将机器人技术应用于其情况,这是一组新需求的来源。因此,将在套件内制定其他标准。然而,本标准是独立和完整的。 1.2 执行位置- 本试验方法应在试验实验室或实施规定仪器和环境条件的现场进行。 1.3 单位- 以国际单位制表示的数值应为标准值。括号中给出的值不是精确到英寸-磅单位的数学转换。它们是近似等效物,用于指定材料尺寸或数量,以避免试验装置的过度制造成本,同时保持试验方法结果的重复性和再现性。括号中给出的这些值有助于测试,但不被视为标准值。 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。 本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 在应急响应操作中使用机器人的主要目的是提高在危险或无法进入的环境中操作的应急响应人员的安全性和有效性。候选机器人的测试结果应以具有统计意义的方式描述机器人能够执行指定类型任务的可靠性,从而为应急响应人员提供足够高的置信度,以确定机器人的适用性。 5.2 该测试方法解决了应急响应人员和其他相关组织代表表示的机器人性能要求。 该测试方法中捕获的性能数据表明了测试机器人的能力。根据国家应对框架中所述的“各级政府有责任制定详细、稳健的所有危害应对计划”的指导方针,提供了一份经过成功测试的机器人名册,以及相关能力数据,以指导应急响应人员的采购和部署决策。 5.3 该测试方法是测试套件的一部分,旨在根据应急响应社区的确定需求为机器人通信系统提供能力基线。 由于可能存在极端的通信困难,充分的测试性能无法确保在所有应急响应环境中成功运行。相反,本标准旨在提供一个通用的比较,以帮助选择合适的系统。本标准还旨在鼓励开发用于应急响应机器人的改进和创新通信系统。 5.4 标准装置易于制造,便于机器人开发人员进行自我评估,并为应急响应人员提供练习任务,以练习机器人执行器、传感器和操作员界面。 标准仪器也可用于支持操作员培训,以建立操作员熟练程度。 5.5 虽然该测试方法是首先为应急响应机器人开发的,但它可能适用于其他操作领域,如执法和武装部队。
1.1 Purpose: 1.1.1 The purpose of this test method, as a part of a suite of radio communication test methods, is to quantitatively evaluate a teleoperated robot’s (see Terminology E2521 ) capability to perform maneuvering and inspection tasks in a non-line-of-sight environment. 1.1.2 Robots shall possess a certain set of radio communication capabilities, including performing maneuvering and inspection tasks in a non-line-of-sight environment, to suit critical operations for emergency responses. The capability for a robot to perform these types of tasks in obstructed areas down range is critical for emergency response operations. This test method specifies a standard set of apparatuses, procedures, and metrics to evaluate the robot/operator capabilities for performing these tasks. 1.1.3 Emergency response robots shall be able to operate remotely using the equipped radios in line-of-sight environments, in non-line-of-sight environments, and for signal penetration through such impediments as buildings, rubbles, and tunnels. Additional capabilities include operating in the presence of electromagnetic interference and providing link security and data logging. Standard test methods are required to evaluate whether candidate robots meet these requirements. 1.1.4 ASTM E54.08.01 Task Group on Robotics specifies a radio communication test suite, which consists of a set of test methods for evaluating these communication capabilities. This non-line-of-sight range test method is a part of the radio communication test suite. The apparatuses associated with the test methods challenge specific robot capabilities in repeatable ways to facilitate comparison of different robot models as well as particular configurations of similar robot models. 1.1.5 This test method establishes procedures, apparatuses, and metrics for specifying and testing the capability of radio (wireless) links used between the operator station and the testing robot in a non-line-of-sight environment. These links include the command and control channel(s) and video, audio, and other sensor data telemetry. 1.1.6 This test method is intended to apply to ground based robotic systems and small unmanned aerial systems (sUAS) capable of hovering to perform maneuvering and inspection tasks down range for emergency response applications. 1.1.7 This test method specifies an apparatus that is, first of all, an essentially clear radio frequency channel for testing. In addition, a standard line-of-sight barrier between the testing operator control unit (OCU) and the robot is specified. Fig. 1 provides an illustration. FIG. 1 Test Fabrication at An Air Strip Left: The non-line-of-sight range test method uses an airstrip or flat, paved road with robot test stations placed in front of and behind a wall constructed of stacked 12 m (40 ft) International Standards Organization (ISO) shipping containers. Right: Robot test stations are prototyped behind the wall with targets on the barrels for visual inspection tasks and circular paths for maneuvering tasks. Note 1: Frequency coordination and interoperability are not addressed in this standard. These issues should be resolved by the affected agencies (Fire, Police, and Urban Search and Rescue) and written into Standard Operating Procedures (SOPs) that guide the responses to emergency situations. 1.1.8 The radio communication test suite quantifies elemental radio communication capabilities necessary for robots intended for emergency response applications. As such, based on their particular capability requirements, users of this test suite can select only the applicable test methods and can individually weight particular test methods or particular metrics within a test method. The testing results should collectively represent an emergency response robot’s overall radio communication capability. These test results can be used to guide procurement specifications and acceptance testing for robots intended for emergency response applications. Note 2: As robotic systems are more widely applied, emergency responders might identify additional or advanced robotic radio communication capability requirements to help them respond to emergency situations. They might also desire to use robots with higher levels of autonomy, beyond teleoperate onto help reduce their workload—see NIST Special Publication 1011-II-1.0. Further, emergency responders in expanded emergency response domains might also desire to apply robotic technologies to their situations, a source for new sets of requirements. As a result, additional standards within the suite would be developed. This standard is, nevertheless, standalone and complete. 1.2 Performing Location— This test method shall be performed in a testing laboratory or the field where the specified apparatus and environmental conditions are implemented. 1.3 Units— The values stated in SI units shall be the standard. The values given in parentheses are not precise mathematical conversions to inch-pound units. They are close approximate equivalents for the purpose of specifying material dimensions or quantities that are readily available to avoid excessive fabrication costs of test apparatuses while maintaining repeatability and reproducibility of the test method results. These values given in parentheses facilitate testing but are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 A main purpose of using robots in emergency response operations is to enhance the safety and effectiveness of emergency responders operating in hazardous or inaccessible environments. The testing results of the candidate robot shall describe, in a statistically significant way, how reliably the robot is able to perform the specified types of tasks and thus provide emergency responders sufficiently high levels of confidence to determine the applicability of the robot. 5.2 This test method addresses robot performance requirements expressed by emergency responders and representatives from other interested organizations. The performance data captured within this test method are indicative of the testing robot’s capabilities. Having available a roster of successfully tested robots with associated capabilities data to guide procurement and deployment decisions for emergency responders is consistent with the guideline of “Governments at all levels have a responsibility to develop detailed, robust, all-hazards response plans” as stated in National Response Framework. 5.3 This test method is part of a test suite and is intended to provide a capability baseline for the robotic communications systems based on the identified needs of the emergency response community. Adequate testing performance will not ensure successful operation in all emergency response environments due to possible extreme communications difficulties. Rather, this standard is intended to provide a common comparison that can aid in choosing appropriate systems. This standard is also intended to encourage development of improved and innovative communications systems for use on emergency response robots. 5.4 The standard apparatus is specified to be easily fabricated to facilitate self-evaluation by robot developers and provide practice tasks for emergency responders to exercise robot actuators, sensors, and operator interfaces. The standard apparatus can also be used to support operator training to establish operator proficiency. 5.5 Although the test method was developed first for emergency response robots, it may be applicable to other operational domains, such as law enforcement and armed services.
分类信息
关联关系
研制信息
归口单位: E54.09
相似标准/计划/法规
现行
ASTM E2801-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Gaps
评估应急机器人功能的标准测试方法:移动性:限制区域障碍:差距
2020-01-01
现行
ASTM E2829-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Maneuvering Tasks: Sustained Speed
评估应急机器人功能的标准测试方法:移动性:机动任务:持续速度
2020-01-01
现行
ASTM E3426/E3426M-24
Standard Test Method for Evaluating Aerial Response Robot Endurance
评估空中反应机器人耐久性的标准试验方法
2024-02-01
现行
ASTM E2803-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Inclined Planes
评估应急机器人功能的标准测试方法:移动性:密闭区域障碍物:倾斜飞机
2020-01-01
现行
ASTM E2804-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Stairs/Landings
评估应急机器人功能的标准测试方法:移动性:限制区域障碍物:楼梯/着陆
2020-01-01
现行
ASTM E2830-11(2020)
Standard Test Method for Evaluating the Mobility Capabilities of Emergency Response Robots Using Towing Tasks: Grasped Sleds
使用牵引任务评估应急机器人的移动能力的标准测试方法:抓住雪橇
2020-01-01
现行
ASTM E2566-17a
Standard Test Method for Evaluating Response Robot Sensing: Visual Acuity
评估响应机器人感应的标准测试方法:视力
2017-09-01
现行
ASTM E2853/E2853M-22
Standard Test Method for Evaluating Ground Response Robot Capabilities: Search Tasks
评估地面反应机器人能力的标准试验方法:搜索任务
2022-05-01
现行
ASTM E2991/E2991M-17
Standard Test Method for Evaluating Response Robot Mobility: Traverse Gravel Terrain
评估响应机器人移动性的标准测试方法:横移砾石地形
2017-09-01
现行
ASTM E2992/E2992M-17
Standard Test Method for Evaluating Response Robot Mobility: Traverse Sand Terrain
评估反应机器人移动性的标准测试方法:横穿沙地形
2017-09-01
现行
ASTM E2854/E2854M-21
Standard Test Method for Evaluating Response Robot Radio Communications Line-of-Sight Range
评定机器人无线电通信视线范围的标准试验方法
2021-01-01
现行
ASTM E2828/E2828M-20
Standard Test Method for Evaluating Response Robot Mobility Using Symmetric Stepfields Terrains
用对称阶梯场地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E3380/E3380M-23
Standard Test Method for Evaluating Ground Response Robot Endurance Using Reproducible Terrains
使用可复制地形评估地面反应机器人耐久性的标准试验方法
2023-04-01
现行
ASTM E2802/E2802M-21e1
Standard Test Method for Evaluating Response Robot Mobility Using Variable Hurdle Obstacles
用可变跨栏障碍物评价机器人机动性的标准试验方法
2021-03-01
现行
ASTM E3408/E3408M-23
Standard Test Method for Evaluating Ground Response Robot Capabilities: Dexterity: Linear Inspection
评估地面反应机器人能力的标准试验方法:灵活性:线性检验
2023-09-15
现行
ASTM E2827/E2827M-20
Standard Test Method for Evaluating Response Robot Mobility Using Crossing Pitch/Roll Ramp Terrains
用交叉俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2826/E2826M-20
Standard Test Method for Evaluating Response Robot Mobility Using Continuous Pitch/Roll Ramp Terrains
使用连续俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01