首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2662-15(2022)
到馆提醒
收藏跟踪
购买正版
Standard Practice for Radiographic Examination of Flat Panel Composites and Sandwich Core Materials Used in Aerospace Applications 航空航天应用中平板复合材料和夹层芯材的射线照相检验
发布日期: 2022-12-01
1.1 本规程旨在作为规程的补充 1974年 , 第1255页 , 2013年 和 698年 . 1.2 本规程描述了完全或部分由纤维增强聚合物基复合材料制成的平板复合材料和夹层芯材的射线照相检查程序。射线照相检查为: 一 )胶片射线照相术(RT), b )带成像板的计算机射线照相术(CR), c )带数字检测器阵列(DDA)的数字射线照相(DR),以及 d )具有检测系统(如图像增强器)的放射镜(RTR)实时射线照相术。所考虑的复合材料通常包含连续的高模量纤维(>20 GPa),如 1.4 . 1.3 本规程描述了工业界目前使用的既定射线照相检查方法,这些方法在产品工艺设计和优化、工艺控制、制造后检查、运行中检查和健康监测过程中证明了在平板复合材料和夹层芯材的质量保证中的实用性。 可在中找到其他指南 第2533页 ,航空航天用聚合物基复合材料无损检测指南。 1.4 本规程适用于检查平板复合材料和夹层结构,包括但不限于双马来酰亚胺、环氧树脂、酚醛树脂、聚(酰胺酰亚胺)、聚苯并咪唑、聚酯(热固性和热塑性)、聚(醚醚酮)、聚醚酰亚胺、聚酰亚胺(热固性和热固性)、聚苯硫醚或聚砜基质;以及氧化铝、芳族聚酰胺、硼、碳、玻璃、石英或碳化硅纤维。典型的预制几何结构包括单轴、交叉层和角层压板;以及蜂窝芯夹层结构。 1. 5. 本规程未规定验收拒收标准,也不打算用作批准平板复合材料或夹层芯材使用的方法。 1.6 为确保正确使用参考标准,有公认的无损检测(NDT)专家,他们根据行业和公司无损检测规范进行认证。建议无损检测专家参与任何复合部件设计、质量保证、在役维护或损坏检查。 1.7 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《国际标准、指南和建议制定原则决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 5.1 射线照相检查可用于产品和工艺设计优化、在线工艺控制、制造后检查和使用中检查。除了验证结构位置外,对于蜂窝芯材,还可以使用射线照相检查来检测节点粘结、芯与芯之间的拼接以及芯与结构之间的拼接。 射线照相检查尤其适用于检测亚表面缺陷。通过射线照相检查检测到的一般类型的缺陷包括吹芯、芯腐蚀、损坏的细丝、密度变化、截留的流体、纤维脱粘、纤维错位、异物、断裂、夹杂物、微裂纹、节点粘结失效、孔隙率/空隙和厚度变化。 5.2 射线照相检查中影响图像形成和X射线衰减的因素,以及与解释相关条件的图像相关的因素,应包含在检查请求中。示例包括但不限于:层压材料(基质和纤维)、叠层几何结构、纤维体积分数(平板); 饰面材料、芯材、饰面堆叠顺序、芯材几何形状(单元尺寸);芯密度、饰面空隙含量、粘合剂空隙含量和饰面体积百分比钢筋(夹层芯材);总厚度、试件对齐和试件相对于梁的几何结构(平板和夹层芯材)。 5.3 有关使用射线照相检查方法可检测到的不连续性的信息,请参见指南 第2533页 .
1.1 This practice is intended to be used as a supplement to Practices E1742 , E1255 , E2033 , and E2698 . 1.2 This practice describes procedures for radiographic examination of flat panel composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. Radiographic examination is: a ) Film Radiography (RT), b ) Computed Radiography (CR) with Imaging Plate, c ) Digital Radiography (DR) with Digital Detector Array’s (DDA), and d ) Radioscopic (RTR) Real Time Radiography with a detection system such as an Image Intensifier. The composite materials under consideration typically contain continuous high modulus fibers (> 20 GPa), such as those listed in 1.4 . 1.3 This practice describes established radiographic examination methods that are currently used by industry that have demonstrated utility in quality assurance of flat panel composites and sandwich core materials during product process design and optimization, process control, after manufacture inspection, in service examination, and health monitoring. Additional guidance can be found in E2533 , Guide for Nondestructive Testing of Polymer Matrix Composites Used in Aerospace. 1.4 This practice has utility for examination of flat panel composites and sandwich constructions containing, but not limited to, bismaleimide, epoxy, phenolic, poly(amide imide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricated geometries include uniaxial, cross ply and angle ply laminates; as well as honeycomb core sandwich constructions. 1.5 This practice does not specify accept-reject criteria and is not intended to be used as a means for approving flat panel composites or sandwich core materials for service. 1.6 To ensure proper use of the referenced standards, there are recognized nondestructive testing (NDT) specialists that are certified according to industry and company NDT specifications. It is recommended that a NDT specialist be a part of any composite component design, quality assurance, in service maintenance or damage examination. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Radiographic examination may be used during product and process design optimization, on line process control, after manufacture inspection, and in service inspection. In addition to verifying structural placement, radiographic examination can be used in the case of honeycomb core materials to detect node bonds, core-to-core splices, and core-to-structure splices. Radiographic examination is especially well suited for detecting sub-surface flaws. The general types of defects detected by radiographic examination include blown core, core corrosion, damaged filaments, density variation, entrapped fluid, fiber debonding, fiber misalignment, foreign material, fractures, inclusions, micro-cracks, node bond failure, porosity/voids, and thickness variation. 5.2 Factors that influence image formation and X-ray attenuation in radiographic examination, and which are relevant to interpreting the images for the conditions of interest, should be included in the examination request. Examples include, but not limited to, the following: laminate (matrix and fiber) material, lay-up geometry, fiber volume fraction (flat panels); facing material, core material, facing stack sequence, core geometry (cell size); core density, facing void content, adhesive void content, and facing volume percent reinforcement (sandwich core materials); overall thickness, specimen alignment, and specimen geometry relative to the beam (flat panels and sandwich core materials). 5.3 Information regarding discontinuities that are detectable using radiographic examination methods can be found in Guide E2533 .
分类信息
关联关系
研制信息
归口单位: E07.01
相似标准/计划/法规