首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 NY-14-035
到馆提醒
收藏跟踪
购买正版
Optimal Control of Energy Recovery Ventilators during Cooling Season 制冷季节能量回收通风机的最优控制
在提供可接受的室内空气质量(IAQ)的同时最大限度地减少相关能源消耗的问题引起了人们对优化暖通空调设备的关注。能量回收通风机(ERV)在空调排气和室外通风空气之间传递能量,以减少暖通空调系统的能源需求。ERV可在(1)满载、(2)部分负载或(3)全旁路(无能量传输)条件下运行。本文以暖通空调系统能耗最小化为基础,总结出一种控制电动汽车运行的最优策略,并与文献中的其他控制方案进行了比较。本文解释了最优控制策略对ERV的延迟时间的依赖性- 合理的效率比和室外条件。通过TRNSYS对北美四个主要气候城市的办公楼进行模拟,研究了优化系统的节能潜力。结果表明,只要ERV具有转移水分的能力并得到适当的控制,那么,ANERV可以带来显著的年供暖节能(在寒冷气候下约35%)和年制冷节能(高达20%)。此外,研究还表明,室内空气质量在冬季可以得到改善,因为employingERVs可以使寒冷干燥的室外空气增湿。引文:ASHRAE交易——第120卷,第一部分,纽约州纽约
Concern over providing acceptable indoor air quality (IAQ) while minimizing associated energy consumption has raised attentions toward optimizing HVAC equipment. Energy recovery ventilators (ERVs) transfer energy between conditioned exhaust air and outdoor ventilation air to reduce the energy demand of HVAC system. An ERV may operate in (1) full-load, (2) part-load, or (3) full bypass (no energy transfer) condition. In this paper, based on minimization of HVAC system energy consumption, an optimal strategy to control the operation of an ERV is concluded and compared to other control alternatives in the literature. The paper explains the dependency of the optimal control strategy to the ERV's latentto- sensible effectiveness ratio and outdoor conditions. Potential energy savings with an optimized system is investigated by TRNSYS simulation of an office building in four North American cities as representatives of major climates. The results showthat anERVcan lead to significant annual heating energy saving (about 35% in cold climate) and annual cooling energy saving (up to 20%), provided the ERV has the capability to transfer moisture and is properly controlled. Also, it is shown that IAQ can be improved during the winter, since employingERVs humidifies cold-dry outdoor air.
分类信息
发布单位或类别: 未知国家-其他未分类
关联关系
研制信息
相似标准/计划/法规