首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 WRC 100
到馆提醒
收藏跟踪
购买正版
Electron Beam Welding 电子束焊接
自从Nicoli Tesla首次申请基于真空玻璃灯泡中石墨的电子束轰击加热的光源的专利以来,电子束技术已经取得了进步,通过这种方法进行的实际生产正在获得业界的广泛认可。跟随特斯拉利用能源作为工作工具的重要人物是西德卡尔蔡司基金会的K. H. Steigerwald和电子束光学技术书籍的作者J.R. Pierce。 该工艺的首次实际焊接应用由J。 他于1957年在法国巴黎举行的燃料元件技术研讨会上宣布了第一台电子束焊机。通用电气汉福德实验室的W.L.Wyman被认为是在大约同一时期开发了美国第一台电子束焊机。 电子束焊接在材料连接领域,特别是在航空航天行业,得到了迅速的认可。截至本文撰写之时,已售出200多台电子束焊机,设备制造商报告称,此类焊接设备的活动和兴趣正在增加。 高低压电子束焊接这一有争议的话题已经淡出了人们的视野,这个话题在电子束焊接技术中不再被认为是最重要的。 电子束焊接系统的基本部件是真空室和泵、电子束枪和高压控制器。电子束焊机分为两类,低压型(高达60000 v)和高压型(高达150000 Y)。此外,还有两种基本的枪支设计概念,施泰格瓦尔德和皮尔斯式枪支。 与其他更传统的熔焊工艺不同,电子束工艺能够产生具有非常窄横截面积的非常深的熔透焊缝。电子束焊接的深宽比可以达到或大于20:1。讨论了这一现象,并解释了高深宽比的影响。 计划和设计电子束焊接的工程师必须彻底了解该工艺的优点和局限性。充分讨论了与飞行硬件电子束成功生产相关的设计概念、接头配置和其他数据。 大多数冶金连接工艺在金属连接之前高度依赖于足够的工具。与大多数熔焊工艺一样,电子束焊接必须几乎完全依靠工装和夹具,才能生产飞行硬件,以满足航空航天行业要求的严格尺寸公差。讨论了在焊接铌-1%锆、钼等高温合金和其他耐火合金结构时与工具有关的问题。图示了各种航空航天硬件的高生产率夹具。 对对接接口的焊缝设计和公差进行了描述和说明,以帮助设计和开发工程师。 与传统焊接相比,焊接技术和焊接再现性更多地取决于操作员技术。电子束焊机对束流功率和焦点的微小变化极为敏感,因此需要精确控制和仔细调整。操作员必须完全熟悉机器及其功能。在生产应用中,工艺的再现性极高。 重复焊接操作表明,一致的焊缝熔深和宽度小于0.002英寸。变异 电子束焊接工艺很容易适用于常规焊接工艺不可行的焊接件,其中最重要的是焊接箔材、厚到薄的材料和异种金属。此外,电子束焊接的重要应用包括复杂的结构,几乎不允许变形;需要在深孔、深槽和其他相对难以接近的区域进行焊接的结构; 微电子;以及高速单道电子束焊接具有显著经济优势的重型型材。已成功完成活性金属和陶瓷的焊接。 质量控制和检查要求与传统焊接工艺类似。目视、磁粉、染色渗透、超声波和X射线检查程序均适用于电子束焊接件。 虽然电子束焊接件的广泛成本分析尚未完成,但典型的例子表明,与其他自动熔焊技术相比,这是非常有利的。 由于腔室排空而造成的时间损失可以通过多个夹具得到极大补偿。 目前,电子束焊接工艺正在从实验室发展到生产,并已成为金属连接领域不可或缺的一部分。这个过程的未来应用几乎是无限的。 除了具有腔室(包含电子枪和横向机构,并将工件放入其中)的常规装置外,还可以制造定制装置,其腔室安装在接合部分周围,并且工件通过密封件进入。 在大气压下焊接接头的电子束焊接机方面,这项技术的发展非常先进。 电子束焊接的未来取决于人类是否能将其应用于自己的需要。
Since Nicoli Tesla first applied for patents on a light source based on electron beam bombardment heating of graphite in evacuated glass bulbs, electron beam technology has advanced wherein practical production joining by this method is gaining industry-wide acceptance. Men of importance who followed Tesla's concept of utilizing this energy source as a working tool were K. H. Steigerwald of the Carl Zeiss Foundation in West Germany and J.R. Pierce, author of a technical book on electron beam optics. The first practical welding applications of this process were accomplished by J. A. Stohr, who announced the first electron beam welder at the Technical Symposium of Fuel Elements in Paris, France in 1957. W. L. Wyman of General Electric Hanford Laboratories is credited with developing the first electron beam welder in the United States at about this same time period. Electron beam welding has gained rapid recognition in the materials joining field, particularly in the aerospace industry. More than 200 electron beam welding machines have been sold as of this writing and equipment manufacturers report an increasing activity and interest in this type of welding equipment. The controversial subject of high vs. low voltage electron beam welding has faded into the background and this topic is no longer considered of prime importance in electron beam welding technology. The basic components of an electron beam welding system are the vacuum chamber and pumps, electron beam gun, and high voltage controls. Electron beam welding machines have been classified into two groups, the low voltage type (up to 60,000 v) and the high voltage type (up to 150,000 Y). Also, there are two basic gun design concepts, the Steigerwald and Pierce type guns. Unlike other more conventional fusion welding processes, the electron beam process is capable of producing very deeply penetrated welds with very narrow cross-sectional areas. The depth-to-width ratios of electron beam welds can be as great, or greater than, 20 to 1. This phenomenon is discussed and the effects of high depth-to-width ratios are explained. Engineers who are planning and designing for electron beam welding must have a thorough understanding of the advantages and limitations of the process. Design concepts, joint configurations and other data pertinent to successful electron beam production of flight hardware are fully discussed. Most metallurgical joining processes are highly dependent upon adequate tooling before metals can be joined. As in most fusion welding processes, electron beam welding must depend almost entirely upon tooling and fixturing before flight hardware can be produced to meet the stringent dimensional tolerances demanded of the aerospace industry. Problems associated with tooling when welding high temperature alloys such as columbium - 1 % zirconium, molybdenum and other refractory alloy configurations are discussed. Fixtures permitting high productivity of various aerospace hardware are illustrated. Weld joint designs and tolerances of abutting interfaces are described and illustrated to aid the design and development engineer. Welding techniques and weld reproducibility are more a function of operator technique than in conventional welding. The electron beam welder is extremely sensitive to small variations in beam power and focus, thus requiring accurate controls and careful adjustments. The operator must be thoroughly familiar with the machine and its capabilities. In production applications, reproducibility of the process is extremely high. Repetitive weld operations have shown consistent weld penetration and width to less than 0.002 in. variation. The electron beam welding process is easily adapted to weldments not feasible with conventional welding processes, the most important of which are welding foil material, thick to thin materials and dissimilar metals. Also, important applications of electron beam welding include complex structures where little distortion can be tolerated; structures where welding is required in deep holes, deep grooves and other relatively inaccessible areas; micro-electronics; and heavy sections where high-speed, single-pass electron beam welding offers significant economic advantage. Welding of reactive metals and ceramics has been successfully accomplished. Quality control and inspection requirements are similar to those of conventional welding processes. Visual, magnetic particle, dye-penetrant, ultrasonic, and X-ray inspection procedures are all applicable to electron beam weldments. While extensive cost analyses of electron beam weldments have yet to be compiled, typical examples predict a very favorable comparison with other automatic fusion welding techniques. Time losses due to chamber evacuation can be greatly compensated for by multiple fixturing. At the present time the electron beam welding process is evolving from the laboratory to production and has become an integral part of the metals joining field. Future application of this process is virtually unlimited. In addition to the conventional units having a chamber which contains the electron gun and traversing mechanisms and into which the workpiece is placed, custom units can be made whose chambers fit around the joint portion and the workpiece enters through seals. Development is well advanced on electron beam welders that will weld joints that are at atmospheric pressure. The future of electron beam welding is dependent on man's ingenuity to apply it to his needs.
分类信息
发布单位或类别: 未知国家-其他未分类
关联关系
研制信息
相似标准/计划/法规
现行
WRC 196
Electron Beam Welding
电子束焊接
现行
SAE AMS2681B
Welding, Electron-Beam
电子束焊接
2022-01-21
现行
SAE ARP1317A
Electron Beam Welding
电子束焊接
1994-11-01
现行
JB/T 11062-2010
电子束焊接工艺指南
Recommendations for electron beam welding
2010-04-22
现行
GB/T 19867.3-2008
电子束焊接工艺规程
Welding procedure specification for electron beam welding
2008-03-31
现行
AWS C7.3-2016
Process Specification for Electron Beam Welding
电子束焊接工艺规程
2016-01-01
现行
SAE AS7110/3D
Nadcap Requirements for Electron Beam Welding
Nadcap电子束焊接要求
2007-03-06
现行
SME AD98-290
Welding Aluminum With Nvebw (Nonvacuum Electron Beam Welding)
用非真空电子束焊接铝
1998-11-01
现行
BS EN ISO 14744-3-2001
Welding. Acceptance inspection of electron beam welding machines-Measurement of beam current characteristics
焊接 电子束焊接机的验收检查 束流特性的测量
2001-04-15
现行
SAE AMS2680C
Electron-Beam Welding For Fatigue Critical Applications
疲劳临界应用的电子束焊接
2019-01-14
现行
BS EN ISO 14744-4-2001
Welding. Acceptance inspection of electron beam welding machines-Measurement of welding speed
焊接 电子束焊接机的验收检查 焊接速度的测量
2001-04-15
现行
UNE-EN 1011-7-2005
Welding. Recommendations for welding of metallic materials. Part 7: Electron beam welding.
焊接 金属材料焊接的建议 第7部分:电子束焊接
2005-09-07
现行
DIN EN 1011-7
Welding - Recommendations for welding of metallic materials - Part 7: Electron beam welding
焊接.金属材料焊接建议.第7部分:电子束焊接;德文版EN 1011-7:2004
2004-10-01
现行
ISO/TR 17671-7-2004
Welding — Recommendations for welding of metallic materials — Part 7: Electron beam welding
焊接与焊接;金属材料焊接建议第7部分:电子束焊接
2004-06-14
现行
HB 5299.2-2014
航空工业焊接操作人员资格鉴定与认证 第2部分:电子束焊及激光焊
Qualification and certification of welding manipulating personnel for aviation industries-Part 2: Electron beam welding and laser beam welding
2014-05-19
现行
KS B ISO 14744-3
용접 — 전자 빔 용접기에 대한 성능검사 — 제3부: 빔 전류 특성의 측정
焊接电子束焊机的验收第3部分:束流特性的测量
2016-12-28
现行
KS B ISO 14744-3(2021 Confirm)
용접 — 전자 빔 용접기에 대한 성능검사 — 제3부: 빔 전류 특성의 측정
焊接-电子束焊机的验收检验-第3部分:束流特性的测量
2016-12-28
现行
ISO 14744-3-2000
Welding — Acceptance inspection of electron beam welding machines — Part 3: Measurement of beam current characteristics
焊接与焊接;电子束焊接机的验收检查第3部分:束流特性的测量
2000-04-13
现行
AWS C7.1M/C7.1-2013
Recommended Practices for Electron Beam Welding and Allied Processes
电子束焊接和相关工艺的推荐规程
2013-02-05
现行
1A1W1S1 Archive Product 422
Recommended Practices for Electron Beam Welding and Allied Processes
电子束焊接和相关工艺的推荐规程
2013-02-05