1.1
This test method covers determination of (
1
) chord modulus of elasticity (Young's) and (
2
) Poisson's ratio of molded concrete cylinders and diamond-drilled concrete cores when under longitudinal compressive stress. Chord modulus of elasticity and Poisson's ratio are defined in Terminology
E6
.
1.2
The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
3.1
This test method provides a stress to strain ratio value and a ratio of lateral to longitudinal strain for hardened concrete at whatever age and curing conditions may be designated.
3.2
The modulus of elasticity and Poisson's ratio values, applicable within the customary working stress range (0 to 40 % of ultimate concrete strength), are used in sizing of reinforced and nonreinforced structural members, establishing the quantity of reinforcement, and computing stress for observed strains.
3.3
The modulus of elasticity values obtained will usually be less than moduli derived under rapid load application (dynamic or seismic rates, for example), and will usually be greater than values under slow load application or extended load duration, given other test conditions being the same.