1.1
This guide covers the thermal property testing of advanced ceramics, to include monolithic ceramics, particulate/ whisker-reinforced ceramics, and continuous fiber-reinforced ceramic composites. It is intended to provide guidance and information to users on the special considerations involved in determining the thermal properties of these ceramic materials.
1.2
Five thermal properties (specific heat capacity, thermal conductivity, thermal diffusivity, thermal expansion, and emittance/emissivity) are presented in terms of their definitions and general test methods. The relationship between thermal properties and the composition, microstructure, and processing of advanced ceramics (monolithic and composite) is briefly outlined, providing guidance on which material and specimen characteristics have to be considered in evaluating the thermal properties of advanced ceramics. Additional sections describe sampling considerations, test specimen preparation, and reporting requirements.
1.3
Current ASTM test methods for thermal properties are tabulated in terms of test method concept, testing range, specimen requirements, standards/reference materials, capabilities, limitations, precision, and special instructions for monolithic and composite ceramics.
1.4
This guide is based on the use of current ASTM standards for thermal properties, where appropriate, and on the development of new test standards, where necessary. It is not the intent of this guide to rigidly specify particular thermal test methods for advanced ceramics. Guidance is provided on how to utilize the most commonly available ASTM thermal test methods, considering their capabilities and limitations.
1.5
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. See
IEEE/ASTM SI 10
.
1.6
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
The high-temperature capabilities of advanced ceramics are a key performance benefit for many demanding engineering applications. In many of those applications, advanced ceramics will have to perform across a broad temperature range. The thermal expansion, thermal diffusivity/conductivity, specific heat, and emittance/emissivity are crucial engineering factors in integrating ceramic components into aerospace, automotive, and industrial systems.
5.2
This guide is intended to serve as a reference and information source for testing the thermal properties of advanced ceramics, based on an understanding of the relationships between the composition and microstructure of these materials and their thermal properties.
5.3
The use of this guide assists the testing community in correctly applying the ASTM thermal test methods to advanced ceramics to ensure that the thermal test results are properly measured, interpreted, and understood. This guide also assists the user in selecting the appropriate thermal test method to evaluate the particular thermal properties of the advanced ceramic of interest.
5.4
The thermal properties of advanced ceramics are critical data in the development of ceramic components for aerospace, automotive, and industrial applications. In addition, the effect of environmental exposure on thermal properties of the advanced ceramics must also be assessed.