首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA ACE61819
到馆提醒
收藏跟踪
购买正版
Using Nanoscale Materials in Water Treatment: Nanomaterials for Arsenic Removal 纳米材料在水处理中的应用:去除砷的纳米材料
发布日期: 2005-06-17
这项研究讨论了将纳米级材料整合到纳米材料中的技术 处理系统(例如,凝聚介质、嵌入式网格、涂层系统等)。 研究的第二个主要部分专门关注 用于去除砷的纳米材料。结论包括对感染风险的评论 饮用水中的纳米颗粒。 新的砷MCL意味着供水设施必须在现场安装地下水处理设施 许多以前只进行过氯化处理的油井。水流 AwwaRF项目正在评估凝聚纳米颗粒介质中的砷 移动广泛的金属、金属氧化物、陶瓷和有机纳米颗粒(<5 nm 可在市场上买到。这项研究主要集中在两个方面 目的:筛选不同的纳米颗粒作为砷吸附剂;和 对市售烧结TiO2纳米颗粒介质的研究。 一组实验使用15种不同的纳米颗粒对砷的去除进行了评估 超纯水和经过GF/C过滤的地表水调节至与超纯水相同的pH值 水和水都加入了砷酸钠(pH值7,~900 ugAs/L,3天接触时间,1 g/L纳米颗粒)。地表水具有较高的TDS(~800 mg/L),并且 代表该地区的许多地下水,但地表水含有~ 4毫克/升DOC。一些纳米颗粒(钨、氧化镧)不能去除砷酸盐。几个 其他纳米颗粒在实验室和表面上去除砷酸盐的效果几乎相当 而另一些则可能由于竞争而在地表水中的去除率较低 离子吸附。氧化锌将实验室水中的砷酸盐从890 ug/L去除至<1 ug/L, 但在地表水中的有效性要低得多。 一些钛基的 纳米颗粒对地表水的去除效果优于实验室水。基于 进行了筛选试验和等温线试验 对于8个纳米颗粒。这项工作证明了钛和锆基材料的可行性 基于纳米颗粒的治疗系统。我们的团队进行了动力学和平衡测试 实验、实验室规模的快速小规模柱试验,以及使用一个 市售凝聚TiO2介质(MetSorbG),通常在平行研究中 使用其他传统吸附剂(E33,GFH)。 团聚纳米颗粒材料 似乎具有更好的动力学特性,从而可能缩短所需的接触时间 治疗系统中的时间。TiO2凝聚介质的吸附能力可以是 与砷酸盐的传统金属(hydr)氧化物介质的顺序相同,但亚砷酸盐的顺序更高。包括15个参考文献,图。
This study discusses the techniques for incorporating nanoscale materials in treatment systems (e.g., agglomerated media, embedded meshes, coated systems, etc). The second, main, part of the study focuses specifically on the use of nanomaterials for arsenic removal. Conclusions include comments about the risk of nanoparticles in drinking water. The new arsenic MCL means that water utilities have to install groundwater treatment at many wells that previously had simply chlorination, if any treatment. A current AwwaRF project is evaluating agglomerated nanoparticle media for arsenic removal. A wide range of metal, metal oxide, ceramic and organic nanoparticles (<5 nm to ~ 60 nm) are commercially available. The research was focused on two main objectives: screening different nanoparticles for use as arsenic adsorbents; and, investigation of commercially available agglomerated TiO2 nanoparticle media. One set of experiments evaluated arsenate removal using 15 different nanoparticles in ultrapure water and a GF/C filtered surface water adjusted to the same pH as the ultrapure water and both spiked with sodium arsenate (pH 7, ~900 ugAs/L, 3 day contact time, 1 g/L of nanoparticles). The surface water has a high TDS (~800 mg/L) and is representative of many groundwaters in the area, except that the surface water contains ~ 4 mg/L of DOC. Some nanoparticles (TungsO, La2O2) did not remove arsenate. Several other nanoparticles removed arsenate nearly equivalently in the laboratory and surface waters, while others had lower removal in the surface water probably due to competitive ion adsorption. The ZnO removed arsenate from 890 ug/L to <1 ug/L in laboratory water, but had significantly less effectiveness in the surface water. Some titanium based nanoparticles had better removal surface water than laboratory water. Based upon the results of the screening tests, isotherms experiments were conducted for 8 nanoparticles. This work demonstrates the viability of titanium and zirconium based nanoparticle-based treatment systems. Our team has conducted kinetic and equilibrium experiments, lab-scale rapid small scale column tests, and pilot-tests using one commercially available agglomerated TiO2 media (MetSorbG), often in parallel studies with other traditional adsorbents(E33,GFH). The agglomerated nanoparticle material appears to have better kinetic properties, resulting in potentially shorter required contact times in treatment systems. Adsorption capacities for TiO2 agglomerated media can be on the same order as traditional metal (hydr)oxide medias for arsenate, but appear higher for arsenite. Includes 15 references, figure.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规