首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D8105-18(2024)
到馆提醒
收藏跟踪
购买正版
Standard Guide for Use and Application of Geosynthetic Reinforcement Reduction Factor Test Results 土工合成材料加筋率试验结果的使用和应用的标准指南
发布日期: 2024-11-01
1.1 本指南介绍了如何将折减系数试验报告的试验结果用于加筋土工合成材料。它仅基于美国州公路和运输官员协会(AASHTO)标准AASHTO R 69-15《土工合成材料钢筋长期强度测定标准实践》中规定的测试和报告要求。AASHTO R 69-15用于确定长期允许的材料强度, T al 这完全取决于产品性能。 1.2 本指南旨在帮助加筋土工合成材料的设计者和使用者审查折减系数测试报告。本指南无意取代教育或经验,或其他替代设计程序。本指南并不代表或取代判断特定专业服务是否充分的护理标准,也不应在不考虑专业服务的情况下应用本文件项目的许多独特方面。并非本指南的所有方面都适用于所有情况。本文件标题中的“标准”一词仅意味着该文件已通过ASTM共识程序获得批准。 1.3 以SI单位或英寸-磅单位表示的值应单独视为标准值。每个系统中陈述的值可能不完全等同;因此,每个系统应独立使用。合并两个系统的值可能导致不符合标准。 1.4 本标准并不旨在解决与其使用相关的所有安全性问题(如果有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践并确定法规限制的适用性。1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ======意义和用途====== 4.1 土工合成加固材料的长期材料强度是许多土木工程项目的关键设计参数,包括但不限于加固墙结构和加固斜坡。土工合成增强产品使用各种聚合物材料和各种制造程序生产。因此,建议使用代表性生产的产品进行产品特定测试,以建立长期-用作结构加固的产品的术语材料强度。 4.2 从加固测试程序中获得的测试结果的主要用途是确定可用的长期(即设计寿命结束时,通常为75年)材料强度, T al ,加固的。可利用的长期实力, T al ,计算如下: 4.3 这种长期土工合成材料加固强度概念在 图1 如图所示,一些强度损失在安装时立即发生,而另一些则在钢筋的整个设计寿命期间发生。大部分长期强度损失直到钢筋设计寿命接近尾声时才开始发生。 4.4 为 T 仅 ,出于设计目的,是产品的最小平均卷值(MARV)。这个最小平均滚动值,表示为T 马尔夫 ,说明材料强度的统计方差。长期强度的不确定性和可变性的其他来源来自安装损坏、蠕变外推和化学降解过程。假设在蠕变断裂包络中观察到的可变性与短期拉伸强度100%相关,因为蠕变强度通常与生产线内的短期拉伸强度成正比。因此,MARV T 仅 充分考虑了蠕变强度的可变性。 4.5 根据AASHTO R 69-15,土工合成材料加固设计折减系数测试报告中提供的测试程序结果侧重于产品线的表征,特别是测试产品线内的代表性产品以实现该表征。4.6 本文件中提供的指南解释了如何使用测试数据来表征整个产品线的长期强度和耐用性。
1.1 This guide presents a description of how to use test results from reduction factor test reports for reinforcement geosynthetics. It is based solely on testing and reporting requirements as established in American Association of State Highway and Transportation Officials (AASHTO) standard AASHTO R 69-15, Standard Practice for Determination of Long-Term Strength for Geosynthetic Reinforcement. AASHTO R 69-15 is used to determine the long-term allowable material strength, T al , that is solely product property performance dependant. 1.2 This guide is intended to assist designers and users of reinforcement geosynthetics when reviewing reports of reduction factor testing efforts. This guide is not intended to replace education or experience, or other alternative design procedures. This guide is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. Not all aspects of this guide may be applicable in all circumstances. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process. 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 The long-term material strength of geosynthetic reinforcement material is a critical design parameter for many civil engineering projects including, but not limited to, reinforced wall structures and reinforced slopes. Geosynthetic reinforcement products are produced using a variety of polymeric materials and using a variety of manufacturing procedures. Accordingly, product-specific testing using representative produced products is recommended for establishment of long-term material strength for products used as reinforcement in structures. 4.2 The primary use of the test results obtained from a reinforcement testing program is to determine the available long-term (that is, end of design life, typically 75 years) material strength, T al , of the reinforcement. The available long-term strength, T al , is calculated as follows: 4.3 This long-term geosynthetic reinforcement strength concept is illustrated in Fig. 1 . As shown in the figure, some strength losses occur immediately upon installation, and others occur throughout the design life of the reinforcement. Much of the long-term strength loss does not begin to occur until near the end of the reinforcement design life. 4.4 The value selected for T ult , for design purposes, is the minimum average roll value (MARV) for the product. This minimum average roll value, denoted as T MARV , accounts for statistical variance in the material strength. Other sources of uncertainty and variability in the long-term strength result from installation damage, creep extrapolation, and the chemical degradation process. It is assumed that the observed variability in the creep rupture envelope is 100 % correlated with the short-term tensile strength, as the creep strength is typically directly proportional to the short-term tensile strength within a product line. Therefore, the MARV of T ult adequately takes into account variability in the creep strength. 4.5 In accordance with AASHTO R 69-15, the test program results provided in geosynthetic reinforcement design reduction factor test reports are focused on characterization of the product line, specifically testing representative products within the product line to accomplish that characterization. 4.6 The guidelines provided in this document explain how to use the test data to characterize the entire product line with regard to long-term strength and durability properties.
分类信息
关联关系
研制信息
归口单位: D35.01
相似标准/计划/法规