首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E1366-23
到馆提醒
收藏跟踪
购买正版
Standard Practice for Standardized Aquatic Microcosms: Fresh Water 标准化水生微宇宙的标准实施规程:淡水
发布日期: 2023-06-01
1.1 本规程涵盖了获取试验材料对多营养级淡水群落的毒性和其他影响数据的程序,与试验地点无关。 1.2 这些程序也可能有助于研究试验材料和转化产物的命运,尽管可能需要修改和额外的分析程序。 1.3 修改这些程序可能因特殊需要或情况而有正当理由。尽管使用适当的程序比遵循规定的程序更重要,但使用不寻常程序进行的测试的结果不太可能与许多其他测试的结果相比较。 使用这些程序的修改版本和未修改版本获得的结果的比较可能会提供关于进行多营养水平测试的新概念和程序的有用信息。 1.4 这种做法安排如下: 部分 参考文件 2. 术语 3. 实践总结 4. 意义和用途 5. 仪器 6. 设施 6.1 容器 6.2 设备 6.3 危险 7. 微观组件 8. 中等的 8.1 培养基准备 8.2 沉淀物 8.3 微观装配 8.4 试验材料 9 全体的 9.1 库存解决方案 9.2 营养控制 9.3 试验生物体 10 藻类 10.1 动物 10.2 生物体的特异性 10.3 来源 10.4 藻类培养维护 10.5 动物养殖维护 10.6 程序 11 实验设计 11.1 接种 11.2 剔除 11.3 添加试验材料 11.4 测量 11.5 再接种 11.6 分析方法论 12 数据处理 13 测量变量的计算 14 统计分析 15 测试的可接受性 16 结果的解释 17 汇报 18 附件 附件A1 附录 媒体的关系 附录X1 统计指南 附录X2 1.5 以国际单位制表示的数值应视为标准。括号中给出的值仅供参考。 1.6 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 具体危害说明见第节 7. 。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 5.1 进行微观试验是为了获得有关试验材料对三个营养级(初级、次级和碎屑)之间的相互作用以及每个营养级内的竞争性相互作用的毒性或其他影响的信息。 与大多数天然水生生态系统一样,微观世界依赖藻类生产(初级生产)来支持食草动物的营养水平(次级生产),后者与微生物群落一起主要负责维持初级生产所需的营养循环。微观初始条件包括一些碎屑(几丁质和纤维素),系统产生额外的碎屑。微观世界包括具有生态重要性的过程和代表池塘和湖泊的生物,但不是- 特定站点。在可能的范围内,所有溶液都是蒸馏水和试剂级化学品的混合物(见第节 8. )并且所有的生物体都可以在商业培养物收藏中获得。 5.2 所使用的物种易于在实验室中培养,有些物种通常用于单物种毒性测试(指南 电子729 ;实践 1978年3月 ,指南 E1192年 和 E1193年 )。据推测,在决定进行微观世界测试之前,其中一些物种的急性毒性测试结果将可用。 如果可用,单物种毒性结果将有助于区分间接和直接影响。 5.3 这些程序主要基于已公布的方法 ( 4个- 6. ) ,实验室间试验 ( 7个- 10 , 11 ) ,中间研究 ( 12个- 23 , 24 ) ,统计研究 ( 25个- 27 ) 和数学模拟结果 ( 28 ) .关于喷气燃料的最新研究已有报道 ( 29 ) (参见 15.1 用于多变量统计分析)以及多品种检测对农药登记的影响 ( 30 ) 美国环境保护局(EPA)和美国食品药品监督管理局(FDA)发布了类似的微观测试 ( 31 ) 此处描述的方法用于确定可接受测试的标准(第 16 )。使用这种方法测量生物化学应力的其他论文已经发表 ( 32 ) 。 5.4 在测量生态效应的同时,建议测量母体试验化学品的浓度,如果可能的话,测量转化产物的浓度( ( 33 ) 参见第节 12 )。浓度可以在相同的微宇宙或同时进行的复制上测量。关于母体材料和转化产物的化学浓度的信息将有助于评估化学持久性、暴露、积累,并有助于解释回收是否与化学降解或生物适应有关。这个方案只涉及生态影响,因为命运研究的技术是通用的。 5.5 在微观世界中,就像在自然生态系统中一样,一个种群必须能够从其他营养级的产品中获得其需求,保持等于或大于其死亡率的出生率,并支持将清除其废物的生物种群。 与自然生态系统一样,几种生物可能能够实现相同的功能,物种优势的转变可以在不破坏生态过程的情况下发生。然而,在一个功能上是“生态等效物”的物种在其他功能上可能不是“等效物”;例如,丝状藻类和单细胞藻类可能同样产生O 2. ,删除NO 3. ,小时 3. 、和采购订单 4. ,但它们所能维持的食草动物种群类型不同,例如,丝状藻类可能支持片脚类动物,而单细胞藻类可能支持 水蚤属 。 5.6 与单一物种毒性测试相比,这些微观世界测试的结果更有可能表明自然生态系统对化学品的反应,因为微观世界测试可以表明,当更敏感的竞争对手或捕食者被消灭或通过竞争相互作用增加食物供应时,群落中可能会出现爆炸性的种群增加。此外,微观世界测试更有可能通过母体或降解产物在其食物来源或栖息地的浓度来显示化学转化或增加对某些生物体的暴露的影响。 5.7 提供了一份潜在生态影响清单作为总结(见 附件A1 )。 5.8 微观试验也可用于获得未包含在对照接种物中的物种或菌株的毒性或其他影响的信息 ( 13 ) 。可能需要进行其他修改。 5.9 水生微宇宙协议的明确限制: 5.9.1 试验范围在以下方面受到限制: 5.9.1.1 不包括鱼类或其他脊椎动物, 5.9.1.2 捕食 水蚤属 极为有限或不存在, 5.9.1.3 生态系统变得营养有限, 5.9.1.4 接种物不是无菌的,也没有使用无菌技术(除了维持微生物的库存培养物)。受污染的微生物很可能会随着较大的生物体和采样过程而引入。 5.9.1.5 大多数碎屑处理是由沉积物微生物群落进行的,但该方案没有明确描述或测量该群落。 5.9.2 对自然生态系统的推断应考虑群落结构、限制因素和水化学的差异(见第节 17 ).
1.1 This practice covers procedures for obtaining data concerning toxicity and other effects of a test material to a multi-trophic level freshwater community, independent of the location of the test. 1.2 These procedures also might be useful for studying the fate of test materials and transformation products, although modifications and additional analytical procedures might be necessary. 1.3 Modification of these procedures might be justified by special needs or circumstances. Although using appropriate procedures is more important than following prescribed procedures, results of tests conducted using unusual procedures are not likely to be comparable to results of many other tests. Comparison of results obtained using modified and unmodified versions of these procedures might provide useful information concerning new concepts and procedures for conducting multi-trophic level tests. 1.4 This practice is arranged as follows: Section Referenced Documents 2 Terminology 3 Summary of Practice 4 Significance and Use 5 Apparatus 6 Facilities 6.1 Container 6.2 Equipment 6.3 Hazards 7 Microcosm Components 8 Medium 8.1 Medium Preparation 8.2 Sediment 8.3 Microcosm Assembly 8.4 Test Material 9 General 9.1 Stock Solution 9.2 Nutrient Control 9.3 Test Organisms 10 Algae 10.1 Animals 10.2 Specificity of Organisms 10.3 Sources 10.4 Algal Culture Maintenance 10.5 Animal Culture Maintenance 10.6 Procedure 11 Experimental Design 11.1 Inoculation 11.2 Culling 11.3 Addition of Test Material 11.4 Measurements 11.5 Reinoculations 11.6 Analytical Methodology 12 Data Processing 13 Calculations of Variables from Measurements 14 Statistical Analyses 15 Acceptability of Test 16 Interpretation of Results 17 Report 18 Annex Annex A1 Appendices Relationship of Media Appendix X1 Statistical Guidance Appendix X2 1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7 . 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 A microcosm test is conducted to obtain information concerning toxicity or other effects of a test material on the interactions among three trophic levels (primary, secondary, and detrital) and the competitive interactions within each trophic level. As with most natural aquatic ecosystems, the microcosms depend upon algal production (primary production) to support the grazer trophic level (secondary production), which along with the microbial community are primarily responsible for the nutrient recycling necessary to sustain primary production. Microcosm initial condition includes some detritus (chitin and cellulose) and additional detritus is produced by the system. The microcosms include ecologically important processes and organisms representative of ponds and lakes, but are non-site specific. To the extent possible, all solutions are mixtures of distilled water and reagent grade chemicals (see Section 8 ) and all organisms are available in commercial culture collections. 5.2 The species used are easy to culture in the laboratory and some are routinely used for single species toxicity tests (Guide E729 ; Practice D3978 , Guides E1192 and E1193 ). Presumably acute toxicity test results with some of these species would be available prior to the decision to undertake the microcosm test. If available, single species toxicity results would aid in distinguishing between indirect and direct effects. 5.3 These procedures are based mostly on published methods ( 4- 6 ) , interlaboratory testing ( 7- 10 , 11 ) , intermediate studies ( 12- 23 , 24 ) , statistical studies ( 25- 27 ) and mathematical simulation results ( 28 ) . Newer studies on jet fuels have been reported ( 29 ) (See 15.1 for multivariate statistical analyses) and on the implications of multispecies testing for pesticide registration ( 30 ) . Environmental Protection Agency, (EPA) and Food and Drug Administration, (FDA) published similar microcosm tests ( 31 ) . The methods described here were used to determine the criteria for Acceptable Tests (Section 16 ). Additional papers have been published using this method for measuring chemical stress on organisms ( 32 ) . 5.4 Concurrent to measuring the ecological effects, it is advisable to measure the concentration of the parent test chemical, and if possible, the transformation products ( ( 33 ) see Section 12 ). The concentrations can be measured on either the same microcosms or on concurrent replicates. Information on the chemical concentrations of parent material and transformation products would aid in the assessment of chemical persistence, exposure, accumulation, and in interpreting, if recovery is associated with chemical degradation or biological adaptation. This protocol deals only with ecological effects, because the techniques for fate studies are in general usage. 5.5 In the microcosm, as in natural ecosystems, a population must be able to obtain its requirements from the products of other trophic levels, to maintain a birth rate equal to or greater than its death rate, and to support populations of organisms that will remove its waste products. As in natural ecosystems, several organisms might be capable of fulfilling the same function, and shifts in species dominance can occur without disruption of an ecological process. However, species that are “ecological equivalents” in one function might not be “equivalent” in other functions; for example, a filamentous alga and a single cell alga might equally produce O 2 , remove NO 3 , NH 3 , and PO 4 , but differ in the type of grazer populations they can sustain, for example, filamentous alga might support amphipods whereas unicellular algae might support Daphnia . 5.6 Results of these microcosm tests might be more likely to be indicative of natural ecosystem responses to chemicals than single species toxicity tests because microcosm tests can indicate the explosive population increases that might occur in a community when more sensitive competitors or predators are eliminated or the food supply is increased through competitive interactions. Also, microcosm tests are more likely to display the effects of chemical transformation or increased exposure to certain organisms by means of concentration of parent or degradation products in their food source or habitat. 5.7 A list of potential ecological effects is provided to serve as a summary (see Annex A1 ). 5.8 The microcosm test can also be used to obtain information on the toxicity or other effects of species or strains, not included in the control inocula ( 13 ) . Additional modifications might be required. 5.9 Explicit Limitations of the Aquatic Microcosm Protocol: 5.9.1 The scope of the test is limited in the following respects: 5.9.1.1 No fish or other vertebrates are included, 5.9.1.2 Predation on Daphnia is extremely limited or absent, 5.9.1.3 The ecosystem becomes nutrient limited, 5.9.1.4 The inocula are not gnotobiotic and aseptic technique is not used (except in maintaining stock cultures of microorganisms). Contaminating microorganisms are likely to be introduced with the larger organisms and during sampling. 5.9.1.5 Most detrital processing is carried out by the sediment microbial community, but this community is not clearly described or measured by this protocol. 5.9.2 Extrapolation to natural ecosystems should consider differences in community structure, limiting factors, and water chemistry (see Section 17 ).
分类信息
关联关系
研制信息
归口单位: E50.47
相似标准/计划/法规