首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E3029-15(2023)
到馆提醒
收藏跟踪
购买正版
Standard Practice for Determining Relative Spectral Correction Factors for Emission Signal of Fluorescence Spectrometers 荧光光谱仪发射信号相对光谱校正系数测定的标准实施规程
发布日期: 2023-01-01
1.1 这种做法( 1. ) 2. 描述了在紫外-可见光谱范围内确定基于光栅的荧光光谱仪的相对光谱校正因子的三种方法。这些方法适用于具有0°/90°透射样品几何形状的仪器。每种方法使用不同类型的传输标准,包括 1) 校准光源(CS), 2) 校准检测器(CD)和校准漫反射器(CR),以及 3) 经认证的参考材料(CRM)。不同方法覆盖的波长范围为250 其中一些方法具有比其他方法更宽的范围。在适当的情况下,将简要讨论将这些方法扩展到超过830nm的近红外(NIR)。 这些方法设计用于使用单通道检测器扫描荧光光谱仪,但也可用于多通道检测器,如二极管阵列或CCD。 1.2 以国际单位制表示的值应视为标准值。本标准不包括其他测量单位。 1.3 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。 1.4 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《国际标准、指南和建议制定原则决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 3.1 根据EM波长(λ 相对长度单位 )当比较不同EM波长下的强度比时,或者当需要知道EM光谱的真实形状或峰值最大位置时,也被称为发射的光谱校正对于成功量化是必要的。此处给出了此类校准方法,并在 表1 这种类型的校准是必要的,因为检测系统的光谱响应度可以在其有用波长范围内显著变化(参见 图1 ). 强烈建议波长精度(见测试方法 1988年 )以及检测系统的线性范围(见指南 2019年 和测试方法 E578号 )并且采取适当的步骤以确保在该校准期间所有测量的强度都在线性范围内。例如,当在单色仪中使用宽狭缝宽度时,可能需要衰减器来衰减激发光束或发射,从而降低检测器处的荧光强度。还要注意,当使用EM偏振器时,发射的光谱校正取决于偏振器设置。( 2. )对于此处提到的所有校准程序以及后续样品测量,使用相同的仪器设置非常重要。 图1 发射检测系统(光栅单色仪)的相对光谱响应性示例- 基于PMT),(参见测试方法 E578号 )需要对测量的仪器特定发射光谱进行校正以获得其真实光谱形状(相对强度)。 3.2 当使用带有光谱仪的CCD或二极管阵列探测器测量λ 相对长度单位 选择时,光谱校正因子取决于光谱仪的光栅位置。因此,光谱校正曲线与λ 相对长度单位 必须针对使用的每个光栅位置单独确定。( 3. ) 3.3 仪器制造商通常为排放光谱校正函数提供自动程序和计算,或者他们可以提供在工厂确定的校正。这种校正通常可以在光谱采集期间或作为后期应用- 收集校正。应建议用户验证自动供应商程序和计算或提供的修正是否根据本标准中给出的指南执行和确定。
1.1 This practice ( 1 ) 2 describes three methods for determining the relative spectral correction factors for grating-based fluorescence spectrometers in the ultraviolet-visible spectral range. These methods are intended for instruments with a 0°/90° transmitting sample geometry. Each method uses different types of transfer standards, including 1) a calibrated light source (CS), 2) a calibrated detector (CD) and a calibrated diffuse reflector (CR), and 3) certified reference materials (CRMs). The wavelength region covered by the different methods ranges from 250 nm to 830 nm with some methods having a broader range than others. Extending these methods to the near infrared (NIR) beyond 830 nm will be discussed briefly, where appropriate. These methods were designed for scanning fluorescence spectrometers with a single channel detector, but can also be used with a multichannel detector, such as a diode array or a CCD. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 3.1 Calibration of the responsivity of the detection system for emission (EM) as a function of EM wavelength (λ EM ), also referred to as spectral correction of emission, is necessary for successful quantification when intensity ratios at different EM wavelengths are being compared or when the true shape or peak maximum position of an EM spectrum needs to be known. Such calibration methods are given here and summarized in Table 1 . This type of calibration is necessary because the spectral responsivity of a detection system can change significantly over its useful wavelength range (see Fig. 1 ). It is highly recommended that the wavelength accuracy (see Test Method E388 ) and the linear range of the detection system (see Guide E2719 and Test Method E578 ) be determined before spectral calibration is performed and that appropriate steps are taken to insure that all measured intensities during this calibration are within the linear range. For example, when using wide slit widths in the monochromators, attenuators may be needed to attenuate the excitation beam or emission, thereby, decreasing the fluorescence intensity at the detector. Also note that when using an EM polarizer, the spectral correction for emission is dependent on the polarizer setting. ( 2 ) It is important to use the same instrument settings for all of the calibration procedures mentioned here, as well as for subsequent sample measurements. FIG. 1 Example of Relative Spectral Responsivity of Emission Detection System (Grating Monochromator-PMT Based), (see Test Method E578 ) for which a Correction Needs to be Applied to a Measured Instrument-Specific Emission Spectrum to Obtain its True Spectral Shape (Relative Intensities). 3.2 When using CCD or diode array detectors with a spectrometer for λ EM selection, the spectral correction factors are dependent on the grating position of the spectrometer. Therefore, the spectral correction profile versus λ EM must be determined separately for each grating position used. ( 3 ) 3.3 Instrument manufacturers often provide an automated procedure and calculation for a spectral correction function for emission, or they may supply a correction that was determined at the factory. This correction can often be applied during spectral collection or as a post-collection correction. The user should be advised to verify that the automated vendor procedure and calculation or supplied correction are performed and determined according to the guidelines given within this standard.
分类信息
关联关系
研制信息
归口单位: E13.01
相似标准/计划/法规