1.1
本规程规定了可用于描述ASTM委员会F45试验方法中使用的障碍物的物理特性。本实施规程中规定的障碍物特征未描述为A-UGV将感测或检测到的方式。相反,这些障碍是根据其真实世界的特征来描述的。例如,可以根据木箱的实际尺寸、材料和颜色来描述其一面为黑色的真实特征。带有激光雷达传感器的A-UGV可能很难检测到箱子的平黑色一侧,这可能会使障碍物看起来比A小-
UGV与现实世界中的实际尺寸进行了比较。然而,由于用于检测障碍物的传感器种类繁多,其他无人值守地面车辆可能并非如此,因此使用实际的真实特征来描述它。
1.2
在现实世界中,现有物体可以用作障碍物,并使用此实践进行描述。本文中规定的特征也可用于构造测试工件,用作具有与真实世界障碍物相似特征的代表性障碍物。可以使用此实践描述的障碍物可能存在于室内和室外环境中。
1.3
本实践并不旨在涵盖可能影响无人值守地面车辆性能的所有相关障碍物特征。本规程中规定的特性仅限于物理特性,就其对无人值守地面车辆性能的影响而言,物理特性被认为是最显著的。因此,本标准的用户可以选择使用的详细程度,以便以这种方式描述障碍物的特性。当比较使用类似障碍的测试方法结果时,这些特征也仅限于更容易测量和复制的特征。
1.4
这种做法仅适用于地面或地面以上存在的障碍物,有时称为正向障碍物,并且在无人值守地面车辆执行任务时保持静止。这种类型的固定现实世界障碍物包括地面上的托盘、桌子和其他无人值守地面车辆。这种做法不包括地下存在的障碍物(例如,孔洞),有时也称为负面障碍物。这种做法不包括A-UGV任务之前不变且已知的环境中的边界或特征,例如墙壁、机架或其他基础设施。
1.5
本规程规定了障碍物的各种物理特性,包括形状、尺寸和表面质量。除参考环境地平面的测量外,本规程未规定试验方法装置内障碍物的位置特性。
1.6
当构建测试工件作为代表真实障碍的障碍时(请参见
4.1
),可以选择并使用特征组合来指导制造。与使用人为障碍物(即为测试目的而制造的障碍物)相比,使用类似的真实障碍物(即真实物体)可能会降低测试条件的再现性,除非在多次测试之间使用相同的真实物体。
1.7
该实践并未规定A-UGV在存在障碍物的情况下的性能。本实践的目的是在使用具有类似特征的障碍物的测试之间进行比较。
1.8
本规程不要求将某些障碍物特性用作测试方法的一部分。测试请求者可以选择特定的障碍物特性作为测试方法的一部分。
1.9
使用本规程描述的障碍物可用于其他ASTM委员会F45标准规定的测试方法,如测试方法
F3244
– 17.在附录中,描述了基线测试,该测试可用于确定障碍物是否能够被a检测到-
在另一ASTM委员会F45测试方法中使用障碍物之前,UGV的传感器(参见
X1.2
).
1.10
以国际单位制表示的数值应视为标准。括号中给出的值不是英制单位的精确数学转换。它们是近似等效物,用于指定材料尺寸或数量,以避免试验装置的过度制造成本,同时保持试验方法结果的重复性和再现性。括号中给出的这些值仅供参考,不被视为标准值。
1.11
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.12
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
4.1
本节列出并解释了用于描述静止障碍物的特征。
4.2
使用这种方法记录有关障碍物的足够信息至关重要,以便可以复制障碍物。这将允许在使用具有类似特征的障碍物的测试方法性能之间进行比较。
4.3
类别:
4.3.1
当描述ASTM委员会F45试验方法中使用的障碍时,定义了两类:
4.3.1.1
正品-
所描述的障碍物是现有的真实世界对象(例如,椅子、桌子、机器或设备)。
应记录任何识别信息,如品牌、型号、SKU等。
4.3.1.2
人工制品-
所描述的障碍物是根据本节概述的特征建造的。这类障碍是可以复制的。
4.4
障碍部分:
4.4.1
每个特征都可以用来描述整个障碍物或部分障碍物的特性。障碍物的所有部分必须在第节所述的测试报告中唯一命名和识别
6.
.
4.5
形状:
4.5.1
形状是指障碍物的外部物理边界之间的关系。
所有形状均可与地面接触或高于地面(参见
图1
,
图2
和
图3
). 独特的障碍物形状有:
4.5.1.1
条(例如,列)
4.5.1.2
面板(例如,标志、托盘、货架)
4.5.1.3
长方体
4.5.1.4
球
4.5.1.5
圆锥
4.5.1.6
其他-
不属于上述类别之一的障碍物形状(例如,一堆织物)。障碍物可以使用单个形状来描述其整体体积,也可以使用多个形状来描述障碍物的部分。例如,桌子的形状可以描述为具有两个从地面到水平面板的垂直面板的高架水平面板,或者桌子的形状可以描述为具有一个或多个从地面到水平面板的垂直条的高架水平面板(参见
图3
).
图1
障碍物形状,在不同方向(从左到右)显示硬边:
竖条、水平条、垂直面板、水平面板、高架水平面板
图2
障碍物形状(从左到右):长方体(用硬边显示)、球体、圆锥体
图3
以硬边(从左到右)显示的障碍物形状组合示例:具有两个垂直面板的高架水平面板,从地面到水平面板(例如,桌子),具有四个垂直条的高架水平面板,从地面到水平面板(例如,桌子),与前一个相同,但带有插入垂直条(例如,桌子)
4.6
面部质量:
4.6.1
每个障碍物的面可以是闭合的(即,它有一个填充该面的曲面)或开放的(即,该面上没有曲面)。
4.6.2
该特征可能因障碍物的每个面或部分而不同:顶部、底部、前部、后部、左侧、右侧。某些障碍物可能没有清晰可辨的面(例如,球体、圆锥体)。
4.6.3
看见
图4
例如,具有封闭面和开放面的障碍物。
图4
障碍物面的变化示例(从左到右):具有闭合面的球体、具有所有闭合面的长方体、具有开放正面的长方体和具有开放顶面的长方体
4.7
变尖:
4.7.1
如果障碍物任何部分的边界改变尺寸并向一端变窄,则视为锥形。
4.8
边缘质量。
4.9
形状边界相交处顶点的质量(请参见
图5
),可以是障碍物上的内部或外部。边缘特征可以是:
4.9.1
硬边:
4.9.1.1
转弯(形成边缘的两个表面之间的角度为90°)
4.9.1.2
倒角(形成边缘的两个表面之间的角度大于90°)
4.9.2
四舍五入:
4.9.2.1
圆角(部分圆形)
4.9.2.2
圆柱形(完全圆形,消除形状的一个或多个面)
图5
障碍物形状边缘变化,显示在垂直条上(从左到右):转角、倒角、圆角和圆柱形
4.10
方向:
4.10.1
障碍物的方向取决于其前方是哪一侧。当规定如何在试验方法装置内定位障碍物时,该特性将在其他标准中引用。
4.11
尺寸:
4.11.1
可以根据以下特征描述障碍物整体(即其整个体积)及其各个部分的大小(例如,对于形状为带腿平面的障碍物,水平面、垂直条的大小以及垂直条从水平面边缘插入的大小):
4.11.2
宽度
4.11.3
长度/深度
4.11.4
身高
4.11.5
标高(从地面到底边)
4.11.6
锥度(如适用)
4.11.6.1
障碍物上锥度开始的位置(即边界开始变窄时)
4.11.6.2
障碍物锥形部分的长度
4.11.6.3
锥角
4.11.7
边缘(如果未转弯)
4.11.7.1
倒角边缘的收进距离(如适用)
4.11.7.2
圆角半径(如适用)
4.11.8
应报告用于测量障碍物尺寸的单位以及这些测量的近似精度。
4.12
材料:
4.12.1
障碍物的材料包括:金属、木材、泡沫、玻璃、塑料、织物、复合材料等。
4.12.2
如果材料旨在阻挡或反射某种类型的传感器,则应在测试报告中说明。
4.12.3
如果已知材料密度,并且与使用障碍物的试验方法相关,则应在试验报告中说明。
4.13
表面:
4.13.1
障碍物表面的特征包括但不限于:
4.13.2
颜色
4.13.3
反射率
4.13.4
不透明度(例如,玻璃、有机玻璃)
4.13.5
多孔固体(例如,木材、钢材)或具有重复穿孔或开口的非固体表面(例如,围栏)
4.13.6
均匀性均匀或可变(即图案、条纹)
4.13.7
不属于上述类别的其他障碍物表面质量。
4.14
注:其他标准的试件可以使用本规程进行描述。例如,ANSI/ITSDF B56.5中的圆柱形试件可以描述为具有圆柱形边缘和平坦黑色表面质量的垂直或水平棒。
4.15
附录中列出了其他标准中引用的常见表面特征示例(见
X1.1
).
4.16
其他相关功能:
4.16.1
应记录与障碍物物理性质有关的任何其他相关特征。例如,如果障碍物具有灯光、产生气流或发出声音。
4.17
障碍描述持续性:
4.17.1
当在试验方法中使用障碍物时,记录的特定障碍物的特性在试验期间不得发生变化,除非障碍物包含柔性材料,这可能导致其形状或尺寸发生变化。例如,软隔板可能因环境中的气流而移动。
如果障碍物在测试过程中受损,导致其形状或尺寸或两者都发生变化,A-UGV现在可能会与受损前的障碍物进行不同的交互。如果障碍物的任何特征发生变化,则将其视为与先前使用的障碍物不同的新障碍物。
1.1
This practice specifies physical characteristics that can be used to describe obstacles utilized within ASTM Committee F45 test methods. The obstacle characteristics specified in this practice are not described with respect to the manner in which they will be sensed or detected by an A-UGV. Rather, the obstacles are described according to their real world characteristics. For example, the real world characteristics of a wooden box that is flat black on one side can be described according to its actual dimensions, material, and color. An A-UGV with a lidar sensor may have difficulty detecting the side of the box that is flat black, which could make the obstacle appear smaller to the A-UGV compared to its actual dimensions in the real world. However, this may not be the case for other A-UGVs due to the wide variety of sensors used to detect obstacles, so the actual, real world characteristics are used to describe it instead.
1.2
Real world, existing objects can be used as obstacles and described using this practice. The characteristics specified herein can also be used to construct test artifacts to use as representative obstacles that are intended to have similar characteristics to that of real world obstacles. The obstacles that can be described using this practice may be found in indoor and outdoor environments.
1.3
This practice does not purport to cover all relevant obstacle characteristics that may have an effect on A-UGV performance. The characteristics specified in this practice are limited to the physical properties which are considered to be the most salient in terms of the effects they can have on A-UGV performance. As such, the user of this standard may select the level of detail to use in order to describe the characteristics of an obstacle in such a way. The characteristics are also limited to those which are more easily measurable and replicable when comparing test method results that use similar obstacles.
1.4
This practice only covers obstacles that exist on or above the ground, sometimes referred to as positive obstacles, and remain stationary while the A-UGV is performing tasks. Stationary real world obstacles of this type include pallets on the ground, desks and tables, and other A-UGVs. This practice does not include obstacles that exist below the ground (for example, holes), sometimes referred to as negative obstacles. This practice does not cover boundaries or features in an environment that are unchanging and known prior to an A-UGV task, such as walls, racks, or other infrastructure.
1.5
This practice specifies a variety of physical characteristics of an obstacle, including shapes, dimensions, and surface qualities. This practice does not specify the location properties of an obstacle within a test method apparatus aside from measurements in reference to the ground plane of the environment.
1.6
When constructing a test artifact as an obstacle representative of a genuine obstacle (see
4.1
), a combination of characteristics can be selected and used to guide fabrication. The use of similar genuine obstacles (that is, real world objects) may decrease reproducibility of testing conditions compared to using artifact obstacles (that is, those that are fabricated for the purposes of testing), unless the same real world object is used between multiple tests.
1.7
This practice does not specify A-UGV performance in the presence of obstacles. The intent of this practice is to enable comparisons between tests that use obstacles with similar characteristics.
1.8
This practice does not require that certain obstacle characteristics be used as part of a test method. The test requestor can elect specific obstacle characteristics to be used as part of a test method.
1.9
Obstacles described using this practice can be utilized in test methods specified by other ASTM Committee F45 standards, such as Test Method
F3244
– 17. In the appendix, a baseline test is described that can be used to determine if an obstacle is able to be detected by an A-UGV’s sensors prior to utilizing the obstacle in another ASTM Committee F45 test method (see
X1.2
).
1.10
The values stated in SI units are to be regarded as the standard. The values given in parentheses are not precise mathematical conversions to imperial units. They are close approximate equivalents for the purpose of specifying material dimensions or quantities that are readily available to avoid excessive fabrication costs of test apparatuses while maintaining repeatability and reproducibility of the test method results. These values given in parentheses are provided for information only and are not considered standard.
1.11
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.12
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
This section lists and explains the characteristics that are used to describe a stationary obstacle.
4.2
It is essential that sufficient information about the obstacle is recorded using this practice so that the obstacle can be replicated. This will allow comparisons to be made between test method performances that use obstacles with similar characteristics.
4.3
Class:
4.3.1
When describing an obstacle to be utilized in ASTM Committee F45 test methods, two classes are defined:
4.3.1.1
Genuine—
The obstacle being described is an existing real world object (for example, a chair, table, machinery, or equipment). Any identifying information, such as make, model, SKU, etc., should be recorded.
4.3.1.2
Artifact—
The obstacle being described has been constructed according to the characteristics outlined in this section. Obstacles of this class are intended to be replicable.
4.4
Parts of the Obstacle:
4.4.1
Each characteristic can be used to describe a property of the entire obstacle or a part of the obstacle. All parts of the obstacle must be uniquely named and identified in the test report described in Section
6
.
4.5
Shape:
4.5.1
The shape refers to the relationships between the external, physical boundaries of the obstacle. All shapes can be in contact with the ground or elevated above the ground (see
Fig. 1
,
Fig. 2
, and
Fig. 3
). The unique obstacle shapes are:
4.5.1.1
Bar (for example, column)
4.5.1.2
Panel (for example, sign, pallet, shelf)
4.5.1.3
Cuboid
4.5.1.4
Sphere
4.5.1.5
Cone
4.5.1.6
Other—
Obstacle shapes that do not fall into one of the above categories (for example, a pile of fabric). An obstacle can use a single shape to describe its overall volume or multiple shapes to describe parts of the obstacle. For example, the shape of a desk could be described as an elevated horizontal panel with two vertical panels spanning from the ground to the horizontal panel or the shape of a table could be described as an elevated horizontal panel with one or more vertical bars spanning from the ground to the horizontal panel (see
Fig. 3
).
FIG. 1
Obstacle Shapes, Shown with Hard Edges in Varying Directions (Left to Right):
Vertical Bar, Horizontal Bar, Vertical Panel, Horizontal Panel, Elevated Horizontal Panel
FIG. 2
Obstacle Shapes (Left to Right): Cuboid (Shown with Hard Edges), Sphere, Cone
FIG. 3
Example Combinations of Obstacle Shapes, Shown with Hard Edges (Left to Right): Elevated Horizontal Panel with Two Vertical Panels Spanning from the Ground to the Horizontal Panel (for example, Desk), Elevated Horizontal Panel with Four Vertical Bars Spanning from the Ground to the Horizontal Panel (for example, Table), the Same as the Previous but with Inset Vertical Bars (for example, Table)
4.6
Face Quality:
4.6.1
The faces of each obstacle can either be closed (that is, it has a surface that fills that face) or open (that is, it has no surface on that face).
4.6.2
This characteristic can vary for each face of the obstacle or part of the obstacle: top, bottom, front, back, left, right. Some obstacles may not have clearly discernible faces (for example, sphere, cone).
4.6.3
See
Fig. 4
for examples of obstacles with closed and open faces.
FIG. 4
Examples of Obstacle Face Variations (Left to Right): Sphere with Closed Faces, Cuboid with All Closed Faces, Cuboid with Open Front Face, and Cuboid with Open Top Face
4.7
Taper:
4.7.1
If the boundaries of any part of the obstacle change dimension and narrow toward one end, it is considered tapered.
4.8
Edge Quality.
4.9
The quality of the vertices where the boundaries of the shape meet (see
Fig. 5
), which can be internal or external on the obstacle. The edge characteristics can be:
4.9.1
Hard edges:
4.9.1.1
Cornered (the angle between the two surfaces forming the edge is 90°)
4.9.1.2
Chamfered (the angle between the two surfaces forming the edge is greater than 90°)
4.9.2
Rounded:
4.9.2.1
Fillets (partially rounded)
4.9.2.2
Cylindrical (completely rounded, eliminating one or more faces of the shape)
FIG. 5
Obstacle Shape Edge Variations, Shown on a Vertical Bar (Left to Right): Cornered, Chamfered, Fillets, and Cylindrical
4.10
Direction:
4.10.1
The direction of the obstacle is dependent on which side is its front. This characteristic will be referenced in other standards when specifying how to orient the obstacle within a test method apparatus.
4.11
Dimensions:
4.11.1
The size of the obstacle overall (that is, its entire volume) and of its individual parts (for example, for an obstacle whose shape is a plane with legs, the size of the horizontal plane, the vertical bars, and the inset of the vertical bars from the edge of the horizontal plane) can be described according to the following characteristics:
4.11.2
Width
4.11.3
Length/depth
4.11.4
Height
4.11.5
Elevation (from ground to bottom edge boundary)
4.11.6
Taper (if applicable)
4.11.6.1
Location on the obstacle where the taper begins (that is, when the boundaries begin to narrow)
4.11.6.2
Length of the part of the obstacle that is tapered
4.11.6.3
Angle of the taper
4.11.7
Edge (if not cornered)
4.11.7.1
Setback distance of chamfered edge (if applicable)
4.11.7.2
Radius of rounded edge (if applicable)
4.11.8
The units used to measure the dimensions of the obstacle and the approximate accuracy of those measurements shall be reported.
4.12
Material:
4.12.1
The material(s) the obstacle is made of: metal, wood, foam, glass, plastic, fabric, composite materials, etc.
4.12.2
If the material is intended to block or reflect a certain type of sensor, this should be stated on the test report.
4.12.3
If the density of the material is known and is relevant for the test method in which the obstacle is utilized, this should be stated on the test report.
4.13
Surface:
4.13.1
Characteristics of the obstacle’s surface include, but are not limited to:
4.13.2
Color
4.13.3
Reflectivity
4.13.4
Opacity (for example, glass, plexiglass)
4.13.5
Porosity—Solid (for example, wood, steel) or non-solid surface with repeated perforations or openings (for example, fencing)
4.13.6
Uniformity—Uniform or variable (that is, patterned, striped)
4.13.7
Other—Obstacle surface qualities that do not fall into one of the above categories.
4.14
Note—Test pieces from other standards can be described using this practice. For example, the cylindrical test pieces from ANSI/ITSDF B56.5 can be described as vertical or horizontal bars with cylindrical edges and flat black surface qualities.
4.15
Examples of common surface characteristics referenced in other standards are listed in the appendix (see
X1.1
).
4.16
Other Relevant Features:
4.16.1
Any other relevant characteristics that pertain to the physical nature of the obstacle should be recorded. For example, if the obstacle features lights, produces air flow, or emanates sound.
4.17
Obstacle Description Persistence:
4.17.1
When the obstacle is utilized in a test method, the characteristics of the specific obstacle that are recorded shall not vary for the duration of the test, except if the obstacle contains flexible material, which may cause its shape or dimensions to vary. For example, a soft partition may move due to air flow in the environment. If the obstacle becomes damaged during testing causing its shape or dimensions, or both, to change, an A-UGV may now interact with the obstacle differently than it did before it was damaged. If any characteristics of the obstacle change, it is considered a new and different obstacle from what was previously utilized.