现行
ASTM G130-12(2020)
到馆提醒
收藏跟踪
分享链接
购买正版
选择购买版本
本服务由中国标准服务网提供
电子版
英语/个人电子版/1-2个工作日发邮件/有水印
¥ 586
更多
前往中国标准服务网获取更多购买信息
Standard Test Method for Calibration of Narrow- and Broad-Band Ultraviolet Radiometers Using a Spectroradiometer
用光谱辐射计校准窄带和宽带紫外线辐射计的标准试验方法
1.1
本试验方法涵盖使用扫描或线性二极管阵列光谱辐射计作为主要参考仪器,对具有窄带或宽带光谱响应分布的紫外线测量辐射计进行校准。对于将通过本试验方法校准的辐射计的校准转移到其他仪器,试验方法
E824
应使用。
注1:
当二极管阵列光谱辐射计用于校准光谱响应分布低于320 nm波长的滤波辐射计时,必须采取特殊预防措施。本试验方法的后续章节详细描述了此类预防措施。
1.2
该测试方法仅限于针对辐射计将在现场使用期间用于测量的光源对辐射计进行校准。
注2:
例如,根据自然阳光校准的紫外线辐射计不能用于测量荧光紫外线灯的总紫外线辐照度。
1.3
使用本试验方法进行的校准可针对自然阳光、氙弧燃烧器、金属卤化物燃烧器、钨和卤钨灯、荧光灯等。
1.4
可通过本试验方法校准的辐射计包括窄带、宽带和宽带紫外线辐射计,以及仅限窄带、宽带和宽带可见光区域的辐射计,或波长响应分布同时属于紫外线和可见光区域的辐射计。
注3:
就本试验方法而言,窄带辐射计是指具有Δλ的辐射计
≤
20 nm,宽带辐射计是指具有20 nm的辐射计
≤
Δλ
≤
70 nm和宽带辐射计是具有Δλ的辐射计
≥
70牛米。
注4:
在本试验方法中,紫外线区域定义为波长285至400 nm的区域,可见光区域定义为波长400至750 nm的区域-
nm波长。紫外线区域进一步定义为波长为315至400 nm的UV-A或波长为285至315 nm的UV-B。
1.5
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.6
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
4.1
本试验方法是校准窄带和宽带紫外线辐射计的首选方法。直接测量光谱辐照度标准源的窄带和宽带紫外线辐射计的校准是校准紫外线辐射计的替代方法。只有当可以计算仪器光谱响应的校正以及校准光谱分布和目标光谱分布之间的光谱失配时,该方法才有效。见测试方法
E973
用于描述光谱失配计算。
4.2
该校准技术的准确性取决于光源的条件(例如,多云的天空、污染的天空、老化的灯具、有缺陷的灯具等),以及光源对齐、光源到接收器的距离和光源功率调节。
注5:
可以想象,辐射计可以根据代表其类别的任意选择老化程度的光源进行校准,以便向测试和参考辐射计呈现该类型最典型的光谱。
4.3
使用积分球或余弦接收器(例如成型PTFE)进行的光谱辐射测量
3.
,或Al
2.
O
3.
扩散板)提供球体入口平面内半球光谱辐照度的测量。因此,必须定义接收器平面相对于参考光源的角度(对于太阳测量,从水平方向的方位角和倾斜度,相对于阳光光束成分的垂直入射,或相对于人造光源或阵列的垂直入射和几何角度)。
重要的是,光谱辐射计的源光学平面与被校准的辐射计平面之间的几何方面应尽可能相同。
注6:
测量光源阵列(灯具)的半球光谱能量分布时,当接收器孔径平面平行于灯具或燃烧器发射区域平面时,通过获得的条件定义正入射。
4.4
使用配备有日射强度计比较管(天空遮挡管)的光谱仪进行校准测量,无论是直接贴在单色仪的入口狭缝、光纤束的末端还是积分球的孔径,除非被校准的辐射计配置为日射强度计(具有视图),否则不得执行-
具有光谱辐射计太阳热量计比较管近似光学常数的限幅装置)。
4.5
使用除积分球或“标准”日射强度计比较管以外的光源光学进行的光谱辐射测量,应事先在所有相关方之间达成一致。
4.6
符合本试验方法要求的校准测量可追溯至国家计量实验室,该实验室参与了光谱辐照度标准的相互比较,主要是通过可追溯标准灯和用于根据本标准校准光谱辐射计的相关电源
G138页
制造商规定的程序,或CIE出版物63。
4.7
除其他要求外,使用光谱辐射计进行的校准测量的精度取决于现场测量期间单色仪机械部件的温度保持程度,与光谱辐射计校准期间的温度保持程度有关。
[1]
1.1
This test method covers the calibration of ultraviolet light-measuring radiometers possessing either narrow- or broad-band spectral response distributions using either a scanning or a linear-diode-array spectroradiometer as the primary reference instrument. For transfer of calibration from radiometers calibrated by this test method to other instruments, Test Method
E824
should be used.
Note 1:
Special precautions must be taken when a diode-array spectroradiometer is employed in the calibration of filter radiometers having spectral response distributions below 320-nm wavelength. Such precautions are described in detail in subsequent sections of this test method.
1.2
This test method is limited to calibrations of radiometers against light sources that the radiometers will be used to measure during field use.
Note 2:
For example, an ultraviolet radiometer calibrated against natural sunlight cannot be employed to measure the total ultraviolet irradiance of a fluorescent ultraviolet lamp.
1.3
Calibrations performed using this test method may be against natural sunlight, Xenon-arc burners, metal halide burners, tungsten and tungsten-halogen lamps, fluorescent lamps, etc.
1.4
Radiometers that may be calibrated by this test method include narrow-, broad-, and wide-band ultraviolet radiometers, and narrow-, broad, and wide-band visible-region-only radiometers, or radiometers having wavelength response distributions that fall into both the ultraviolet and visible regions.
Note 3:
For purposes of this test method, narrow-band radiometers are those with Δλ
≤
20 nm, broad-band radiometers are those with 20 nm
≤
Δλ
≤
70 nm, and wide-band radiometers are those with Δλ
≥
70 nm.
Note 4:
For purposes of this test method, the ultraviolet region is defined as the region from 285 to 400-nm wavelength, and the visible region is defined as the region from 400 to 750-nm wavelength. The ultraviolet region is further defined as being either UV-A with radiation of wavelengths from 315 to 400 nm, or UV-B with radiation from 285 to 315-nm wavelength.
1.5
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
This test method represents the preferable means for calibrating both narrow-band and broad-band ultraviolet radiometers. Calibration of narrow- and broad-band ultraviolet radiometers involving direct measurement of a standard source of spectral irradiance is an alternative method for calibrating ultraviolet radiometers. This approach is valid only if corrections for the spectral response of the instrument and the spectral mismatch between the calibration spectral distribution and the target spectral distribution can be computed. See Test Method
E973
for a description of the spectral mismatch calculation.
4.2
The accuracy of this calibration technique is dependent on the condition of the light source (for example, cloudy skies, polluted skies, aged lamps, defective luminaires, etc.), and on source alignment, source to receptor distance, and source power regulation.
Note 5:
It is conceivable that a radiometer might be calibrated against a light source that represents an arbitrarily chosen degree of aging for its class in order to present to both the test and reference radiometers a spectrum that is most typical for the type.
4.3
Spectroradiometric measurements performed using either an integrating sphere or a cosine receptor (such as a shaped PTFE
3
, or Al
2
O
3
diffuser plate) provide a measurement of hemispherical spectral irradiance in the plane of the sphere's entrance port. As such, the aspect of the receptor plane relative to the reference light source must be defined (azimuth and tilt from the horizontal for solar measurements, normal incidence with respect to the beam component of sunlight, or normal incidence and the geometrical aspect with respect to an artificial light source, or array). It is important that the geometrical aspect between the plane of the spectroradiometer's source optics and that of the radiometer being calibrated be as nearly identical as possible.
Note 6:
When measuring the hemispherical spectral energy distribution of an array of light sources (for lamps), normal incidence is defined by the condition obtained when the plane of the receiver aperture is parallel to the plane of the lamp, or burner, emitting area.
4.4
Calibration measurements performed using a spectroradiometer equipped with a pyrheliometer-comparison tube (a sky-occluding tube), regardless of whether affixed directly to the monochromator's entrance slit, to the end of a fiber optic bundle, or to the aperture of an integrating sphere, shall not be performed unless the radiometer being calibrated is configured as a pyrheliometer (possesses a view-limiting device having the approximate optical constants of the spectroradiometer's pyrheliometer-comparison tube).
4.5
Spectroradiometric measurements performed using source optics other than the integrating sphere or the “standard” pyrheliometer comparison tube, shall be agreed upon in advance between all involved parties.
4.6
Calibration measurements that meet the requirements of this test method are traceable to a national metrological laboratory that has participated in intercomparisons of standards of spectral irradiance, largely through the traceability of the standard lamps and associated power supplies employed to calibrate the spectroradiometer according to
G138
, the manufacturer‘s specified procedures, or CIE Publication 63.
4.7
The accuracy of calibration measurements performed employing a spectroradiometer is dependent on, among other requirements, the degree to which the temperature of the mechanical components of the monochromator are maintained during field measurements in relation to those that prevailed during calibration of the spectroradiometer. [1]