首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E1411-23
到馆提醒
收藏跟踪
购买正版
Standard Practice for Qualification of Radioscopic Systems 射线检查系统鉴定的标准实施规程
发布日期: 2023-12-01
1.1 本规程涵盖了测量X射线和伽马射线放射系统性能的测试和测量细节。射线透视是一种射线照相技术,可用于( 1. )动态模式射线照相,实时(每秒25到30帧)或同时跟踪运动或优化射线照相参数,接近实时(每秒几帧)或高速(每秒数百到数千帧),或( 2. )静态模式射线照相,其中在作为无胶片记录介质的曝光期间对象没有运动。这种做法 2. 提供了使用穿透辐射进行放射检查的应用细节,该穿透辐射使用模拟组件,如电子- 光学设备(例如,X射线图像增强器(XRII)或模拟相机,或两者兼有)或用于动态模式放射照相的数字检测器阵列(DDA)。此做法不适用于使用DDA的静态模式放射复制。如果正在使用数字检测器阵列(即数字检测器阵列射线照相术)进行静态射线照相,请使用规程 E2698 . 1.1.1 这种实践也可用于线性检测器阵列(LDA)应用,其中LDA使用检测器和部件之间的相对垂直运动来逐行构建图像。 1.1.2 这种做法也可以用于“飞点”应用,即铅笔状的X射线束在物体上光栅扫描,逐点构建图像。 1.2 应用基础: 1.2.1 本实践和实践的要求 E1255 应一起使用。实践的要求 E1255 提供材料放射检查的最低要求。该实践旨在通过确定在静态或动态模式下运行时的性能,对特定应用的放射系统进行初步鉴定和重新鉴定。重新鉴定可能需要认可的工程组织和供应商之间的协议,或认可的工程机构的具体指示,并应在采购订单或合同中说明。 1.2.2 系统体系结构,包括射线检查记录存档的方法和做出接受/拒绝决定的方法,也是独特的系统特征,必须评估它们对系统性能的影响。 1.2.3 该鉴定程序旨在对选定操作条件下的放射系统性能进行基准测试,以提供系统性能的衡量标准。鉴定不应限制在其他放射检查参数设置下的放射检查系统的操作,这可能会提高实际检查对象的性能。本规程既不赞成也不反对将合格的射线透视系统用于特定应用。 它仅作为评估系统性能的标准化手段。 1.3 如本实践中所述,一般原理广泛适用于透射光束穿透辐射射线照相系统。其他放射系统,如使用中子和康普顿背散射X射线成像技术的系统,不包括在内,因为它们可能涉及此类系统特有的设备和应用细节。 1.4 本规程的使用者应注意,高于320的能量 keV可能需要与本实践中描述的方法不同的方法。 1.5 本规程要求在将系统用于生产之前,应发布系统鉴定报告。 1.6 单位-- 以国际单位制表示的数值应视为标准。本标准不包括其他计量单位。 1.7 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 5.1 与传统的射线照相术一样,放射检查广泛适用于许多可能被X射线或伽马射线穿透的材料和物体配置。由于组件选择、物理布置和对象变量,放射系统之间的架构和性能存在高度变化,因此有必要确定所选放射系统在特定应用中能够实现的性能。射线透视系统的制造商或集成商以及用户需要确定射线透视系统性能水平的共同基础。 5.2 该实践并不旨在提供一种测量根据各种行业标准制造的单个放射系统组件的性能的方法。本规程涵盖了作为功能放射系统一起操作时放射系统元件的组合性能的测量。 5.3 该实践解决了静态模式或动态模式下放射系统的性能问题,这可以允许源、零件和检测器之间的相对测试零件运动,并且可能有也可能没有能力在放射检查过程中影响参数变化。提醒放射复制的用户,放射复制的动态方面可能会对系统性能产生有益和有害的影响。 5.4 根据本规程测量的放射镜系统性能并不能保证实际运行中可能实现的性能水平,但确实提供了一个基线,可以将定期性能评估与之进行比较,以确保系统在既定的限度内运行。通过标准化检查无法可靠地预测物体几何形状和方向产生的散射辐射的影响。所有的放射系统都会随着时间的推移而老化和性能下降。如果维护和操作员调整不正确,可能会对放射系统的性能产生不利影响;因此,系统应重新- 定期合格(见第节 10 ). 5.5 在这种实践中,手动和半自动放射系统中的放射系统操作员的性能没有被考虑在内,并且可能对放射系统性能产生主要影响。操作员资格和认证是系统操作的一个重要方面,并包含在实践要求的单独书面程序中 E1255 .
1.1 This practice covers test and measurement details for measuring the performance of X-ray and gamma ray radioscopic systems. Radioscopy is a radiographic technique that can be used in ( 1 ) dynamic mode radioscopy to track motion or optimize radiographic parameters in real-time (25 to 30 frames per second), or both, near real-time (a few frames per second), or high speed (hundreds to thousands of frames per second) or ( 2 ) static mode radioscopy where there is no motion of the object during exposure as a filmless recording medium. This practice 2 provides application details for radioscopic examination using penetrating radiation using an analog component such as an electro-optic device (for example, X-ray image intensifier (XRII) or analog camera, or both) or a Digital Detector Array (DDA) used in dynamic mode radioscopy. This practice is not to be used for static mode radioscopy using DDAs. If static radioscopy using a DDA (that is, DDA radiography) is being performed, use Practice E2698 . 1.1.1 This practice also may be used for Linear Detector Array (LDA) applications where an LDA uses relative perpendicular motion between the detector and component to build an image line by line. 1.1.2 This practice may also be used for “flying spot” applications where a pencil beam of X-rays rasters over an object to build an image point by point. 1.2 Basis of Application: 1.2.1 The requirements of this practice and Practice E1255 shall be used together. The requirements of Practice E1255 provide the minimum requirements for radioscopic examination of materials. This practice is intended as a means of initially qualifying and re-qualifying a radioscopic system for a specified application by determining its performance when operated in a static or dynamic mode. Re-qualification may require agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization and should be addressed in the purchase order or the contract. 1.2.2 System architecture including the means of radioscopic examination record archiving and the method for making the accept/reject decision are also unique system features and their effect upon system performance must be evaluated. 1.2.3 This qualification procedure is intended to benchmark radioscopic system performance under selected operating conditions to provide a measure of system performance. Qualification shall not restrict operation of the radioscopic system at other radioscopic examination parameter settings, which may provide improved performance on actual examination objects. This practice neither approves nor disapproves the use of the qualified radioscopic system for the specified application. It is intended only as a standardized means of evaluating system performance. 1.3 The general principles, as stated in this practice, apply broadly to transmitted-beam penetrating radiation radioscopy systems. Other radioscopic systems, such as those employing neutrons and Compton back-scattered X-ray imaging techniques, are not covered as they may involve equipment and application details unique to such systems. 1.4 The user of this practice shall note that energies higher than 320 keV may require different methods than those described within this practice. 1.5 This practice requires that a System Qualification Report be issued before using the system for production use. 1.6 Units— The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 As with conventional radiography, radioscopic examination is broadly applicable to the many materials and object configurations which may be penetrated with X-rays or gamma rays. The high degree of variation in architecture and performance among radioscopic systems due to component selection, physical arrangement, and object variables makes it necessary to establish the performance that the selected radioscopic system is capable of achieving in specific applications. The manufacturer or integrator of the radioscopic system, as well as the user, require a common basis for determining the performance level of the radioscopic system. 5.2 This practice does not purport to provide a method to measure the performance of individual radioscopic system components that are manufactured according to a variety of industry standards. This practice covers measurement of the combined performance of the radioscopic system elements when operated together as a functional radioscopic system. 5.3 This practice addresses the performance of radioscopic systems in the static mode or dynamic mode, that can allow relative test-part motion between source, part, and detector, and may or may not have the ability to effect parameter changes during the radioscopic examination process. Users of radioscopy are cautioned that the dynamic aspects of radioscopy can have beneficial as well as detrimental effects upon system performance. 5.4 Radioscopic system performance measured pursuant to this practice does not guarantee the level of performance which may be realized in actual operation but does provide a baseline against which periodic performance evaluations can be compared to ensure the system is operating within established limits. The effects of object-geometry and orientation-generated scattered radiation cannot be reliably predicted by a standardized examination. All radioscopic systems age and degrade in performance as a function of time. Maintenance and operator adjustments, if not correctly made, can adversely affect the performance of radioscopic systems; therefore, the system shall be re-qualified at periodic intervals (see Section 10 ). 5.5 The performance of the radioscopic system operator in manual and semi-automatic radioscopic systems is not taken into account in this practice and can have a major effect upon radioscopic system performance. Operator qualifications and certification are an important aspect of system operation and are covered in a separate written procedure required by Practice E1255 .
分类信息
关联关系
研制信息
归口单位: E07.01
相似标准/计划/法规
现行
ASTM E1416-23
Standard Practice for Radioscopic Examination of Weldments
焊接件射线检查的标准实施规程
2023-02-01
现行
ASTM E1734-23
Standard Practice for Radioscopic Examination of Castings
铸件射线检查的标准实施规程
2023-06-01
现行
GB/T 17925-2011
气瓶对接焊缝X射线数字成像检测
Standard practice for X-ray digital radioscopic examination of cylinder weld
2011-12-30
现行
ASTM D8340-22
Standard Practice for Performance-Based Qualification of Spectroscopic Analyzer Systems
光谱分析仪系统的性能鉴定标准实施规程
2022-10-01
现行
ASTM F905-04(2022)
Standard Practice for Qualification of Polyethylene Saddle-Fused Joints
聚乙烯鞍式熔接接头的评定
2022-11-01
现行
ASTM E2503-13(2020)
Standard Practice for Qualification of Basket and Paddle Dissolution Apparatus
篮式和桨式溶解仪器的标准实践
2020-04-01
现行
ASTM A488/A488M-24
Standard Practice for Steel Castings, Welding, Qualifications of Procedures and Personnel
铸钢件、焊接、程序和人员资格评定的标准实施规程
2024-03-01
现行
ASTM F3620-22
Standard Practice for Respiratory Protection—Respirator Use—Physical Qualifications for Personnel
人员呼吸防护呼吸器使用物理资格的标准实施规程
2022-12-01
现行
ASTM E2230-22
Standard Practice for Thermal Qualification of Type B Packages for Radioactive Material
放射性材料B型包装的热鉴定标准实施规程
2022-01-01
现行
ASTM D4227-05(2023)
Standard Practice for Qualification of Coating Applicators for Application of Coatings to Concrete Surfaces
混凝土表面涂层涂敷器的评定标准实施规程
2023-04-01
现行
ASTM D4228-05(2023)
Standard Practice for Qualification of Coating Applicators for Application of Coatings to Steel Surfaces
钢表面涂层涂敷器评定的标准实施规程
2023-04-01
现行
ASTM F1552-94(2016)
Standard Practice for Training Instructor Qualification and Certification Eligibility of Emergency Medical Dispatchers
紧急医疗调度员的培训指导资格和认证资格的标准实践
2016-06-01
现行
KS C IEC 60980(2017 Confirm)
원자력 발전소 안전계통 전기설비의 내진검증을 위한 권고 사항
核电站安全系统电气设备抗震资格推荐做法
2012-11-23
现行
KS C IEC 60980(2022 Confirm)
원자력 발전소 안전계통 전기설비의 내진검증을 위한 권고 사항
核电站安全系统电气设备抗震鉴定推荐规程
2012-11-23
现行
ASTM E3263-22e1
Standard Practice for Qualification of Visual Inspection of Pharmaceutical Manufacturing Equipment and Medical Devices for Residues
药品制造设备和医疗器械残留物目视检查的评定标准实施规程
2022-05-01
现行
ASTM D4286-08(2021)
Standard Practice for Determining Coating Contractor Qualifications for Nuclear Powered Electric Generation Facilities
确定核电发电设备涂装承包商资格的标准做法
2021-02-01
现行
API RP 17Y-2022
Recommended Practice for Design, Testing, and Qualification of Subsea Chemical Injection Delivery Systems, First Edition
水下化学注入输送系统的设计、测试和鉴定推荐规程 第一版
2022-04-01
现行
SAE 6906A
Standard Practice for Human Systems Integration
人体系统集成的标准实施规程
2023-12-13
现行
ASTM C1671-20a
Standard Practice for Qualification and Acceptance of Boron Based Metallic Neutron Absorbers for Nuclear Criticality Control for Dry Cask Storage Systems and Transportation Packaging
基于硼的金属中子吸收剂的标准实践 用于干式储藏系统和运输包装的核关键控制
2020-07-01
现行
ASTM F3600-22
Standard Guide for Unmanned Aircraft System (UAS) Maintenance Technician Qualification
无人机系统(UAS)维修技术员资格认证标准指南
2022-12-01