首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2926-17
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Forensic Comparison of Glass Using Micro X-ray Fluorescence (µ-XRF) Spectrometry 使用微X射线荧光的玻璃法医比较的标准测试方法(
发布日期: 2017-02-01
1.1 本试验方法用于测定玻璃碎片中的主要、次要和微量元素。玻璃碎片的元素组成可以通过使用µ-XRF分析进行玻璃比较来测量。 1.2 本试验方法涵盖了使用单毛细管和多毛细管光学以及能量色散X射线探测器(EDS)的µXRF的应用。 1.3 本测试方法不能取代知识、技能、能力、经验、教育或培训,应与专业判断结合使用。 1.4 以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。 1.5 本标准并非旨在解决与其使用相关的所有安全问题(如有)。 本标准的用户有责任在使用前制定适当的安全和健康实践,并确定监管限制的适用性。 ====意义和用途====== 4.1 µ-XRF提供了一种同时检测小玻璃碎片中主要、次要和微量元素成分的方法,例如在法医案件工作中经常检查的玻璃碎片。由于其完全非破坏性,它可以在分析方案中的任何点使用,而无需考虑改变样品形状或样品特性,例如RI。 4.2 检测限(LOD)取决于几个因素,包括仪器配置和操作参数、样品厚度和单个元素的原子序数。 典型的LOD范围为百万分之几(µgg -1 )至百分比(%)。 4.3 µ-XRF可同时对原子序数为11或更大的元素进行定性分析。这种多元素能力允许检测通常存在于玻璃中的元素,例如镁(Mg)、硅(Si)、铝(Al)、钙(Ca)、钾(K)、铁(Fe)、钛(Ti)、锶(Sr)和锆(Zr),以及可以通过µ-XRF在一些玻璃中检测到的其他元素(例如,钼(Mo)、硒(Se),或铒(Er))而不需要预定的元素菜单。 4.4 玻璃碎片的µ-XRF比较提供了超出RI或密度比较或两者单独的额外鉴别能力。 4.5 应在每个实验室针对该实验室的特定条件和仪器建立方法精度。 4.6 当使用具有不同表面几何形状和厚度的小碎片时,由于起飞角度和临界深度效应,精度会下降。厚度大于1.5 mm的扁平碎片不受这些限制,但并非总是可以作为案例中收到的有问题的样本。由于小碎片的精度下降以及缺乏适当的校准标准,通常不使用µ-XRF定量分析。 4.7 应使用适当的取样技术来考虑材料的自然不均匀性、不同的表面几何形状和潜在的临界深度影响。 4.8 电感耦合等离子体发射光谱法(ICP-OES)和电感耦合等离子体质谱法(ICP-MS)也可用于玻璃的微量元素分析,并提供较低的最低检测水平和定量分析能力。然而,这些方法具有破坏性,需要更大的样本量和更长的样本制备时间(试验方法 E2330 ). 4.9 激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)使用与µXRF相同的样品尺寸,但具有更好的LOD、定量能力和更少的分析时间。LA-ICP-MS的缺点是仪器成本较高,操作复杂。 4.10 EDS扫描电子显微镜(SEM-EDS)也可用于元素分析,但由于在痕量浓度水平下存在于玻璃中的较高原子序数元素的检测极限较差,因此它在法医玻璃源识别中的应用有限。 然而,可能会对具有无法区分的RIs和密度的源进行区分。
1.1 This test method is for the determination of major, minor, and trace elements present in glass fragments. The elemental composition of a glass fragment can be measured through the use of µ-XRF analysis for comparisons of glass. 1.2 This test method covers the application of µ-XRF using mono- and poly- capillary optics, and an energy dispersive X-ray detector (EDS). 1.3 This test method does not replace knowledge, skill, ability, experience, education, or training and should be used in conjunction with professional judgment. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. ====== Significance And Use ====== 4.1 µ-XRF provides a means of simultaneously detecting major, minor, and trace elemental constituents in small glass fragments such as those frequently examined in forensic case work. It can be used at any point in the analytical scheme without concern for changing sample shape or sample properties, such as RI, due to its totally nondestructive nature. 4.2 Limits of detection (LOD) are dependent on several factors, including instrument configuration and operating parameters, sample thickness, and atomic number of the individual elements. Typical LODs range from parts per million (µgg -1 ) to percent (%). 4.3 µ-XRF provides simultaneous qualitative analysis for elements having an atomic number of eleven or greater. This multi-element capability permits detection of elements typically present in glass such as magnesium (Mg), silicon (Si), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), titanium (Ti), strontium (Sr), and zirconium (Zr), as well as other elements that may be detectable in some glass by µ-XRF (for example, molybdenum (Mo), selenium (Se), or erbium (Er)) without the need for a predetermined elemental menu. 4.4 µ-XRF comparison of glass fragments provides additional discrimination power beyond that of RI or density comparisons, or both, alone. 4.5 The method precision should be established in each laboratory for the specific conditions and instrumentation in that laboratory. 4.6 When using small fragments having varying surface geometries and thicknesses, precision deteriorates due to take-off-angle and critical depth effects. Flat fragments with thickness greater than 1.5 mm do not suffer from these constraints, but are not always available as questioned specimens received in casework. As a consequence of the deterioration in precision for small fragments and the lack of appropriate calibration standards, quantitative analysis by µ-XRF is not typically used. 4.7 Appropriate sampling techniques should be used to account for natural heterogeneity of the material, varying surface geometries, and potential critical depth effects. 4.8 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) may also be used for trace elemental analysis of glass and offer lower minimum detection levels and the ability for quantitative analysis. However, these methods are destructive, and require larger sample sizes and much longer sample preparation times (Test Method E2330 ). 4.9 Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) uses comparable specimen sizes to those used for µ-XRF but offers better LODs, quantitative capability and less analysis time. LA-ICP-MS drawbacks are greater instrument cost and complexity of operation. 4.10 Scanning Electron Microscopy with EDS (SEM-EDS) is also available for elemental analysis, but it is of limited use for forensic glass source discrimination due to poor detection limits for higher atomic number elements present in glass at trace concentration levels. However, discrimination of sources that have indistinguishable RIs and densities may be possible.
分类信息
发布单位或类别: 美国-美国材料与试验协会
关联关系
研制信息
归口单位: E30.01
相似标准/计划/法规