首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA WQTC60753
到馆提醒
收藏跟踪
购买正版
Dynamic Particle Analysis: A New Technology for Optimizing Particle Removal In a Water Treatment Plant 动态颗粒分析:优化水处理厂颗粒去除的新技术
发布日期: 2004-11-15
一种名为动态粒子分析(DPA)的新粒子表征技术为 研究WTP过程动力学。DPA利用数字显微镜、图像分析和流体分析仪 用于对流动液体中的颗粒群进行计数、大小和成像的处理系统。主要优势 这项技术包括速度、灵敏度和高颗粒浓度的准确检测(>106) mL)允许在WTP的所有阶段应用。此外,DPA技术还提供了新的 通过提供的粒子图像,深入了解与过程相关的粒子结构。 本研究总结了应用DPA表征全尺寸WTP流的实验结果 在正常工艺条件下。在试验的每个阶段都进行了颗粒表征 处理工艺包括原水进水、混合室、沉淀池出水、双循环- 媒体过滤器 废水、氯接触池和工厂废水。结果与来自美国的数据进行了关联和比较 在线浊度计和在线颗粒计数器。此外,过滤废水在整个过程中都会发生变化 分析了典型的过滤器水力阶跃变化(10ML/天至20ML/天)。 发现DPA装置检测到的粒子数是在线粒子数的三到五倍 相同尺寸测量范围内的计数器。当用于评估过滤器出水对 随着流速的逐步增加,DPA报告从309个粒子/毫升瞬时增加到1355个粒子/毫升 (大于5µm的颗粒从10增加到26),而浊度读数报告的浊度变化非常小 稳定前仅为0.02 NTU。还发现,通过在原水上涂抹,混合 室内样品和沉淀水,DPA技术能够提供对动态的可视性 在整个混凝/絮凝/沉淀过程中形成和去除颗粒,以及 提供有用的数据,可用于评估和最终预测环境下的颗粒去除效率 各种装载和操作条件。 未来的工作将涉及应用DPA来研究污水处理厂颗粒物去除的影响 季节性影响,如水温和原水微生物成分,以及中试规模 探索过程损伤,如非最佳混凝剂剂量、pH值和聚合物剂量。 此外,在一个典型的过滤循环中,包括过滤成熟阶段,过滤效率, 整个运营阶段、早期突破和后期突破阶段的绩效都将受到影响 调查。包括表格、数字。
A new particle characterization technology called Dynamic Particle Analysis (or DPA) provides a tool for studying WTP process dynamics. DPA makes use of digital microscopy, image analysis, and a fluid handling system to count, size, and image particle populations in flowing liquids. Primary advantages of this technique include speed, sensitivity, and accurate detection of high particle concentrations (>106 per mL) permitting application throughout all stages of the WTP. Additionally, DPA technology provides new insights into process-related particle structure by virtue of the particle images made available. This study summarizes experimental results from applying DPA to characterize full-scale WTP streams during normal process conditions. Particle characterization was carried out at each stage of the treatment process including raw water influent, mixing chambers, settling basin effluent, dual-media filter effluent, chlorine contact basin, and plant effluent. Results were correlated and compared to data from online turbidity meters and online particle counters. In addition, filter effluent changes throughout a typical filter hydraulic step-change (10ML/day to 20ML/day) were analyzed. It was found the DPA unit detected three to five times more particles/ml relative to the online Particle Counters over the same size measurement range. When used to evaluate the filter effluent response to the step increase in flow rate, the DPA reported a transient increase from 309 to 1355 particles/ml (particles >5µm increased from 10 to 26) while the turbidity readings reported a very small change of only 0.02 NTU before stabilizing. It was also found that through application upon the raw water, mixing chamber samples, and settled water, the DPA technology was able to provide visibility into the dynamics of particle formation and removal throughout the coagulation/flocculation/sedimentation process and provide useful data that may be used to evaluate and ultimately predict particle removal efficiency under various loading and operational conditions. Future work will involve applying DPA to study treatment plant particle removal as influenced by seasonal effects such as water temperature and raw water microbial constituents, and Pilot-scale exploration of process impairments such as non-optimal coagulant dose, pH, and polymer dose. Additionally, filter effectiveness throughout a typical filter cycle including filter ripening phase, performance throughout operational phase, early breakthrough and late breakthrough phases will be investigated. Includes tables, figures.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规