现行
ASTM A977/A977M-07(2020)
Standard Test Method for Magnetic Properties of High-Coercivity Permanent Magnet Materials Using Hysteresigraphs
高矫顽力永磁材料的磁特性的标准测试方法
1.1
本试验方法涵盖了如何确定硬磁材料(永磁体)的磁特性,特别是其初始磁化、退磁和反冲曲线,以及剩余感应强度、矫顽场强、弯曲场、能量积和反冲磁导率等量。本试验方法适用于通过任何常见制造技术(铸造、烧结、轧制、成型等)加工成大块磁体的所有材料,但不适用于薄膜或非常小或形状异常的磁体。为了获得可重复的结果,必须在整个磁体体积内实现成分、结构和性能的均匀性。特别注意将极高矫顽力与高饱和感应结合在一起的现代材料所带来的问题,例如稀土磁体,其较旧的测试方法(见测试方法
A341/A341M
)不合适。
适用的国际标准是IEC出版物60404-5。
1.2
装置或机器中的磁性系统(电路)通常包括除永磁体外具有气隙的导通和非磁性结构构件。系统行为取决于所有这些部件的特性和几何形状以及工作温度。本试验方法仅描述了如何测量永磁材料的性能。基本测试方法将磁性样本纳入具有闭合磁通径的磁路中。使用完全由待表征磁性材料组成的环形样品或框架的试验方法(通常用于软磁材料)不适用于永磁体。
1.3
本试验方法应结合实践使用
A34/A34M
.
1.4
以常用(cgs-emu或英寸-磅)或国际单位制表示的值和方程应单独视为标准。
在本试验方法中,括号中显示了国际单位制,但与计算有关的章节除外,其中各单位制有单独的章节。每个系统中规定的值可能不是精确的等效值;因此,每个系统应相互独立使用。结合两个系统的值可能会导致与本试验方法不一致。
1.5
本试验方法中使用的磁性量的名称和符号总结在
表1
,是业界普遍接受的。
1.6
本试验方法适用于具有
H
ci公司
值介于约100 Oe和35 kOe[8 kA/m和2.8 MA/m]之间,以及
B
r
数值范围约为500 G至20 kG[50 mT至2 T]。高矫顽力稀土磁体试样可能需要比铁芯电磁铁产生的磁场高得多的磁场。此类样品必须在外部预磁化,并转移到测量轭中。
磁化场的典型值,
H
美格
,所需的饱和磁性材料如所示
表A2.1
.
1.7
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.8
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
4.1
本测试方法适用于磁铁生产、研发和设计中的磁铁规格、验收、服务评估、质量控制。
4.2
当从较大的磁铁上切割或制造试样时,即使材料处于相同的条件下,在其上测量的磁性也不一定与原始样品的磁性完全相同。在这种情况下,必须在零件性能历史的背景下查看测试结果。
4.3
按照本试验方法进行的试验,即使是在同一试样上,但使用不同的试验系统,也可能不会产生相同的结果。差异的主要来源是样品周围区域几何形状的不同测试系统之间的差异,例如电磁铁极帽的大小和形状(参见
附件A1
和
附录X1
),试样端面的气隙,尤其是测量装置的尺寸和位置
H
和
B
或对应的磁通值(霍尔效应探头、感应感应线圈)。同样重要的是
B
校准,例如伏特-
单独对磁通计进行第二次校准,而不是使用物理参考样品对整个系统进行校准。方法
B
和
H
测试报告中应说明传感情况(参见第节
9
).
1.1
This test method covers how to determine the magnetic characteristics of magnetically hard materials (permanent magnets), particularly their initial magnetization, demagnetization, and recoil curves, and such quantities as the residual induction, coercive field strength, knee field, energy product, and recoil permeability. This test method is suitable for all materials processed into bulk magnets by any common fabrication technique (casting, sintering, rolling, molding, and so forth), but not for thin films or for magnets that are very small or of unusual shape. Uniformity of composition, structure, and properties throughout the magnet volume is necessary to obtain repeatable results. Particular attention is paid to the problems posed by modern materials combining very high coercivity with high saturation induction, such as the rare-earth magnets, for which older test methods (see Test Method
A341/A341M
) are unsuitable. An applicable international standard is IEC Publication 60404-5.
1.2
The magnetic system (circuit) in a device or machine generally comprises flux-conducting and nonmagnetic structural members with air gaps in addition to the permanent magnet. The system behavior depends on properties and geometry of all these components and on the operating temperature. This test method describes only how to measure the properties of the permanent magnet material. The basic test method incorporates the magnetic specimen in a magnetic circuit with a closed flux path. Test methods using ring samples or frames composed entirely of the magnetic material to be characterized, as commonly used for magnetically soft materials, are not applicable to permanent magnets.
1.3
This test method shall be used in conjunction with Practice
A34/A34M
.
1.4
The values and equations stated in customary (cgs-emu or inch-pound) or SI units are to be regarded separately as standard. Within this test method, SI units are shown in brackets except for the sections concerning calculations where there are separate sections for the respective unit systems. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this test method.
1.5
The names and symbols of magnetic quantities used in this test method, summarized in
Table 1
, are those generally accepted by the industry.
1.6
This test method is useful for magnet materials having
H
ci
values between about 100 Oe and 35 kOe [8 kA/m and 2.8 MA/m], and
B
r
values in the approximate range from 500 G to 20 kG [50 mT to 2 T]. High-coercivity rare-earth magnet test specimens may require much higher magnetizing fields than iron-core electromagnets can produce. Such samples must be premagnetized externally and transferred into the measuring yoke. Typical values of the magnetizing fields,
H
mag
, required for saturating magnet materials are shown in
Table A2.1
.
1.7
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
This test method is suitable for magnet specification, acceptance, service evaluation, quality control in magnet production, research and development, and design.
4.2
When a test specimen is cut or fabricated from a larger magnet, the magnetic properties measured on it are not necessarily exactly those of the original sample, even if the material is in the same condition. In such instances, the test results must be viewed in context of part performance history.
4.3
Tests performed in general conformity to this test method and even on the same specimen, but using different test systems, may not yield identical results. The main source of discrepancies are variations between the different test systems in the geometry of the region surrounding the sample, such as, size and shape of the electromagnet pole caps (see
Annex A1
and
Appendix X1
), air gaps at the specimen end faces, and especially the size and location of the measuring devices for
H
and
B
or for their corresponding flux values (Hall-effect probes, inductive sensing coils). Also important is the method of
B
calibration, for example, a volt-second calibration of the fluxmeter alone versus an overall system calibration using a physical reference sample. The method of
B
and
H
sensing should be indicated in test reports (see Section
9
).