首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E3426/E3426M-24
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Evaluating Aerial Response Robot Endurance 评估空中反应机器人耐久性的标准试验方法
发布日期: 2024-02-01
1.1 该测试方法适用于在复杂、非结构化且往往危险的环境中运行的远程操作空中反应机器人(即无人机、无人机、无人飞机)。它规定了测量空中机器人任务耐力所需的设备、程序和性能指标,同时保持或遵循由障碍物或边界定义的近似飞行路径,或两者兼而有之,以诱导重复的循环运动。该测试方法是可用于评估整个系统能力的几种机器人测试之一。 1.2 机器人系统包括一个远程飞行员来控制大多数功能,因此通常需要机载摄像头和远程飞行员显示器。该测试方法可用于评估旨在提高远程操作系统的有效性或效率的辅助或自主行为。 1.3 不同的用户群体可以在这种测试方法中为各种任务需求设置自己的可接受性能阈值。 1.4 执行位置-- 该测试方法可以在任何可以实现指定设备和环境条件的地方执行。在不全面了解相关管辖区执行的法律法规的情况下驾驶无人驾驶飞机会带来重大的安全和法律风险。 不遵守这些规定可能会导致事故、人员伤害、财产损失和法律后果。强烈建议本标准的用户审查并遵守所有适用的ASTM委员会F38标准,并确保完全符合管辖当局的要求。 1.5 单位-- 本文件使用国际单位制(SI单位)和美国习惯单位(英制单位)。它们不是数学转换。相反,它们在每个单位系统中都是近似等效的,以便能够在不同的国家使用现成的材料。 为了比较试验方法的结果,每个单位系统中规定尺寸之间的差异是微不足道的,因此每个单位系统在本试验方法中被单独视为标准。 1.6 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 5.1 该测试方法是一整套相关测试方法的一部分,这些测试方法提供了机器人系统移动性和远程飞行员熟练程度的可重复测量。机器人的操作耐力显著影响机器人在各种任务中的性能。机器人耐力是机器人设计、控制方案设计和储能选择的一个复杂功能。这种测试方法通过连续操作来评估机器人的耐力。为耐力测试选择的室外和室内运动测试飞行路径特别挑战机器人系统的运动、维持位置的飞行系统以及远程飞行员的远程态势感知。 因此,它可以用于表示有限区域内的适度室外飞行或室内飞行。室内悬停和居住测试同样挑战这些能力,但要在室外或密闭室内区域内的空气中保持静止。耐久性测试标准提供了一种方法,其中可以比较各种机器人尺寸和运动系统设计的操作耐久性。当在复杂的飞行路径上长时间连续运行或连续使用时,该测试既提供了机器人耐力的测量,也提供了机器人可靠性的测量。 5.2 带有隔离墙的室内测试代表了商业空间和带有走廊、门口或仓库的住宅中可重复的复杂性。 5.3 测试设备成本低且易于制造,因此可以广泛复制。这个程序也很简单。这便于在不同的测试地点和日期之间进行比较,以确定一流的系统和远程飞行员。 5.4 评价 该测试方法可在受控环境中用于测量基线能力。耐力测试设备也可以嵌入到操作训练场景中,以测量由于照明、天气、无线电通信、GPS精度等方面的不受控制的变量而导致的退化。 5.5 采购 该测试方法可用于识别系统中固有的能力权衡,做出明智的采购决策,并在验收测试期间验证性能。这使需求规范和用户期望与现有的能力限制保持一致。 5.6 创造 该测试方法可用于激励技术创新,展示突破能力,并衡量系统在总体任务序列中执行特定任务的可靠性。将多种测试方法组合或排序可以指导制造商实现执行基本任务所需的能力组合。
1.1 This test method is intended for remotely operated aerial response robots (that is, unmanned aerial systems [UAS], drones, unmanned aircrafts) operating in complex, unstructured, and often hazardous environments. It specifies the apparatuses, procedures, and performance metrics necessary to measure the mission endurance of an aerial robot while either station keeping or following an approximate flight path defined by obstacles or boundaries, or both, intended to induce repeated cyclical movement. This test method is one of several robot tests that can be used to evaluate overall system capabilities. 1.2 The robotic system includes a remote pilot in control of most functionality, so an onboard camera and remote pilot display are typically required. This test method can be used to evaluate assistive or autonomous behaviors intended to improve the effectiveness or efficiency of remotely operated systems. 1.3 Different user communities can set their own thresholds of acceptable performance within this test method for various mission requirements. 1.4 Performing Location— This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented. Flying unmanned aircraft without a comprehensive understanding of the laws and regulations enforced by the relevant jurisdiction poses significant safety and legal risks. Failure to comply with these regulations may result in accidents, injuries, property damage, and legal consequences. Users of this standard are strongly advised to review and adhere to all applicable ASTM Committee F38 standards and to ensure full compliance with the authorities holding jurisdiction. 1.5 Units— The International System of Units (SI Units) and U.S. Customary Units (Imperial Units) are used throughout this document. They are not mathematical conversions. Rather, they are approximate equivalents in each system of units to enable use of readily available materials in different countries. The differences between the stated dimensions in each system of units are insignificant for the purposes of comparing test method results, so each system of units is separately considered standard within this test method. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method is part of an overall suite of related test methods that provide repeatable measures of robotic system mobility and remote pilot proficiency. The operational endurance of a robot significantly impacts the performance of the robot during a variety of tasks. Robot endurance is a complex function of robot design, control scheme design, and energy storage selection. This test method evaluates the endurance of a robot through continuous operation. The outdoor and indoor movement tests flight path chosen for endurance testing specifically challenges robotic system locomotion, flight system to maintain position, and remote situational awareness by the remote pilot. As such, it can be used to represent modest outdoor flight or indoor flight within confined areas. The indoor hovering and dwelling tests similarly challenge these capabilities, but for remaining stationary in air within an outdoor or confined indoor area. The endurance test standard provides a method in which the operational endurance of a large variety of robot sizes and locomotion system designs may be compared. The test provides both a measure of the endurance of the robot and a measure of the reliability of the robot when operating continuously for extended periods of time on complex flight paths or continuous use, or both. 5.2 The indoor tests with containment walls represent repeatable complexity within commercial spaces and residential dwellings with hallways and doorways, or warehouses. 5.3 The test apparatuses are low-cost and easy to fabricate so they can be widely replicated. The procedure is also simple to conduct. This eases comparisons across various testing locations and dates to determine best-in-class systems and remote pilots. 5.4 Evaluation— This test method can be used in a controlled environment to measure baseline capabilities. The endurance test apparatus can also be embedded into operational training scenarios to measure degradation due to uncontrolled variables in lighting, weather, radio communications, GPS accuracy, etc. 5.5 Procurement— This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits. 5.6 Innovation— This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple test methods can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.
分类信息
关联关系
研制信息
归口单位: E54.09
相似标准/计划/法规
现行
ASTM E3380/E3380M-23
Standard Test Method for Evaluating Ground Response Robot Endurance Using Reproducible Terrains
使用可复制地形评估地面反应机器人耐久性的标准试验方法
2023-04-01
现行
ASTM E2566/E2566M-24
Standard Test Method for Evaluating Response Robot Sensing: Visual Acuity
评估响应机器人感应的标准测试方法:视力
2024-11-01
现行
ASTM E2991/E2991M-17
Standard Test Method for Evaluating Response Robot Mobility: Traverse Gravel Terrain
评估响应机器人移动性的标准测试方法:横移砾石地形
2017-09-01
现行
ASTM E2853/E2853M-22
Standard Test Method for Evaluating Ground Response Robot Capabilities: Search Tasks
评估地面反应机器人能力的标准试验方法:搜索任务
2022-05-01
现行
ASTM E2992/E2992M-24
Standard Test Method for Evaluating Response Robot Mobility: Traverse Sand Terrain
评估反应机器人移动性的标准测试方法:横穿沙地形
2024-12-01
现行
ASTM E3408/E3408M-23
Standard Test Method for Evaluating Ground Response Robot Capabilities: Dexterity: Linear Inspection
评估地面反应机器人能力的标准试验方法:灵活性:线性检验
2023-09-15
现行
ASTM E2828/E2828M-20
Standard Test Method for Evaluating Response Robot Mobility Using Symmetric Stepfields Terrains
用对称阶梯场地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2802/E2802M-21e1
Standard Test Method for Evaluating Response Robot Mobility Using Variable Hurdle Obstacles
用可变跨栏障碍物评价机器人机动性的标准试验方法
2021-03-01
现行
ASTM E2854/E2854M-21
Standard Test Method for Evaluating Response Robot Radio Communications Line-of-Sight Range
评定机器人无线电通信视线范围的标准试验方法
2021-01-01
现行
ASTM E2801-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Gaps
评估应急机器人功能的标准测试方法:移动性:限制区域障碍:差距
2020-01-01
现行
ASTM E2826/E2826M-20
Standard Test Method for Evaluating Response Robot Mobility Using Continuous Pitch/Roll Ramp Terrains
使用连续俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2827/E2827M-20
Standard Test Method for Evaluating Response Robot Mobility Using Crossing Pitch/Roll Ramp Terrains
用交叉俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2829-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Maneuvering Tasks: Sustained Speed
评估应急机器人功能的标准测试方法:移动性:机动任务:持续速度
2020-01-01
现行
ASTM E2803-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Inclined Planes
评估应急机器人功能的标准测试方法:移动性:密闭区域障碍物:倾斜飞机
2020-01-01
现行
ASTM E2804-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Stairs/Landings
评估应急机器人功能的标准测试方法:移动性:限制区域障碍物:楼梯/着陆
2020-01-01
现行
ASTM E2830-11(2020)
Standard Test Method for Evaluating the Mobility Capabilities of Emergency Response Robots Using Towing Tasks: Grasped Sleds
使用牵引任务评估应急机器人的移动能力的标准测试方法:抓住雪橇
2020-01-01
现行
ASTM E2855-12(2021)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Radio Communication: Non-Line-of-Sight Range
评估应急机器人功能的标准测试方法:无线电通信:非视距范围
2021-01-01