首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E595-15(2021)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment 在真空环境中排放的总质量损失和收集的挥发性可冷凝材料的标准测试方法
发布日期: 2021-04-01
1.1 本试验方法涵盖了一种筛选技术,以确定暴露在真空环境中时材料的挥发性成分。测量了两个参数:总质量损失(TML)和收集的挥发性可冷凝材料(CVCM)。在完成TML和CVCM所需的暴露和测量后,还可以获得另一个参数,即回收的水蒸汽量(WVR)。 1.2 本试验方法描述了用于评估经受125°C冲击的材料质量损失的试验装置和相关操作程序 低于7°C × 10 −3. Pa(5 × 10 −5. torr)24小时。总质量损失可分为不凝物和可凝物。本文中后者的特征是能够在25°C的温度下在收集器上冷凝。 注1: 除非另有说明,25和125的公差 °C为±1 °C和23 °C为±2 °C。 相对湿度公差为±5 %. 1.3 可以测试多种类型的有机、聚合物和无机材料。其中包括聚合物灌封化合物、泡沫、弹性体、薄膜、胶带、绝缘材料、收缩管、粘合剂、涂料、织物、系绳和润滑剂。材料可在“收到”状态下进行测试,或按各种固化规范进行测试。 1.4 该测试方法主要是一种材料筛选技术,由于配置、温度和材料处理的差异,在计算系统或组件上的实际污染时不一定有效。 1.5 材料验收和拒收标准应由用户根据具体部件和系统要求确定。历史上,TML为1.00 % CVCM为0。 10 % 已被用作拒绝航天器材料的筛选级别。 1.6 根据本试验方法,使用被视为可接受的材料并不能确保系统或部件不会受到污染。因此,如有必要,应使用后续的功能、开发和鉴定测试,以确保材料的性能令人满意。 1.7 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 本试验方法在仔细控制的条件下,评估在真空条件下暴露至125℃时试样质量的变化 °C和在25℃温度下离开样品并在收集器上冷凝的产品质量 °C。 5.2 24小时的测试时间并不代表运行数年后的实际放气,因此选择了更高的测试温度和更短的时间,以便进行材料比较,而无意预测在使用中的实际放气。测试温度125 °C被认为明显高于预期的工作温度。如果预期工作温度超过65至70 °C试验温度应升高。建议试验温度至少为30℃ °C高于预期的最高工作温度,以便对TML和CVCM进行材料比较。 5.3 材料放气性能的比较在125时有效 仅适用于°C样品温度和25°C收集器温度。在其他温度下测试的样品只能与在相同温度下测试的其他材料进行比较。 5.4 收集的挥发性可冷凝材料的测量值也具有可比性,仅适用于25℃下类似的收集器几何形状和表面 °C。样品在50至400℃的样品温度下进行测试 °C,收集器温度为1至30 °C。在非标准条件下采集的数据必须明确标识,不得与在125℃下测试的样品进行比较 °C样品温度和25 °C收集器温度。 5.5 本试验方法中的空间真空模拟不要求压力低于行星际飞行中遇到的压力(例如,10 −12 Pa(10 −14 托尔)。与腔室尺寸相比,压力足够低,气体分子的平均自由程足够长就足够了。 5.6 这种筛选材料的方法被认为是保守的,因为假设使用中的最高工作温度不超过50到60℃ °C适用于大多数应用。少数材料可能在预期使用温度下具有可接受的性能,但由于在125℃的试验温度下其性能不符合要求,因此可能会被淘汰 °C.此外,仅在25℃以下冷凝的材料 未检测到°C。用户可以指定其他测试,以使材料符合特定应用。 5.7 TML和WVR的测定受材料获得或损失水蒸汽的能力的影响。因此,称重必须在23的受控条件下完成 °C和50 % 相对湿度。 5.8 或者,在24小时的温度和湿度调节过程中,可以将所有样本放入开放的玻璃瓶中。在从调节室中取出之前,必须盖住小瓶。每个样品必须在打开小瓶后2分钟内称重,以最大限度地减少暴露在不受控制的湿度环境中时水蒸汽的损失或吸收。虽然此时不需要控制湿度,但称重的温度应控制在23℃ °C,与24小时贮存试验规定的温度相同。
1.1 This test method covers a screening technique to determine volatile content of materials when exposed to a vacuum environment. Two parameters are measured: total mass loss (TML) and collected volatile condensable materials (CVCM). An additional parameter, the amount of water vapor regained (WVR), can also be obtained after completion of exposures and measurements required for TML and CVCM. 1.2 This test method describes the test apparatus and related operating procedures for evaluating the mass loss of materials being subjected to 125 °C at less than 7 × 10 −3 Pa (5 × 10 −5 torr) for 24 h. The overall mass loss can be classified into noncondensables and condensables. The latter are characterized herein as being capable of condensing on a collector at a temperature of 25°C. Note 1: Unless otherwise noted, the tolerance on 25 and 125 °C is ±1 °C and on 23 °C is ±2 °C. The tolerance on relative humidity is ±5 %. 1.3 Many types of organic, polymeric, and inorganic materials can be tested. These include polymer potting compounds, foams, elastomers, films, tapes, insulations, shrink tubings, adhesives, coatings, fabrics, tie cords, and lubricants. The materials may be tested in the “as-received” condition or prepared for test by various curing specifications. 1.4 This test method is primarily a screening technique for materials and is not necessarily valid for computing actual contamination on a system or component because of differences in configuration, temperatures, and material processing. 1.5 The criteria used for the acceptance and rejection of materials shall be determined by the user and based upon specific component and system requirements. Historically, TML of 1.00 % and CVCM of 0.10 % have been used as screening levels for rejection of spacecraft materials. 1.6 The use of materials that are deemed acceptable in accordance with this test method does not ensure that the system or component will remain uncontaminated. Therefore, subsequent functional, developmental, and qualification tests should be used, as necessary, to ensure that the material's performance is satisfactory. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method evaluates, under carefully controlled conditions, the changes in the mass of a test specimen on exposure under vacuum to a temperature of 125 °C and the mass of those products that leave the specimen and condense on a collector at a temperature of 25 °C. 5.2 The 24 h test time does not represent actual outgassing from years of operation, so a higher test temperature shorter time was selected to allow material comparisons with no intent to predict actual outgassing in service. The test temperature of 125 °C was assumed to be significantly above the expected operating temperature in service. If expected operating temperatures exceed 65 to 70 °C the test temperature should be increased. It is suggested that test temperature be at least 30 °C higher than expected maximum service temperature in order to provide material comparisons for TML and CVCM. 5.3 Comparisons of material outgassing properties are valid at 125 °C sample temperature and 25°C collector temperature only. Samples tested at other temperatures may be compared only with other materials which were tested at that same temperature. 5.4 The measurements of the collected volatile condensable material are also comparable and valid only for similar collector geometry and surfaces at 25 °C. Samples have been tested at sample temperatures from 50 to 400 °C and at collector temperatures from 1 to 30 °C by this test technique. Data taken at nonstandard conditions must be clearly identified and should not be compared with samples tested at 125 °C sample temperature and 25 °C collector temperature. 5.5 The simulation of the vacuum of space in this test method does not require that the pressure be as low as that encountered in interplanetary flight (for example, 10 −12 Pa (10 −14 torr)). It is sufficient that the pressure be low enough that the mean free path of gas molecules be long in comparison to chamber dimensions. 5.6 This method of screening materials is considered a conservative one because maximum operating temperatures in service are assumed not to exceed 50 to 60 °C for most applications. It is possible that a few materials will have acceptable properties at the intended use temperature but will be eliminated because their properties are not satisfactory at the test temperature of 125 °C. Also, materials that condense only below 25 °C are not detected. The user may designate additional tests to qualify materials for a specific application. 5.7 The determinations of TML and WVR are affected by the capacity of the material to gain or lose water vapor. Therefore, the weighings must be accomplished under controlled conditions of 23 °C and 50 % relative humidity. 5.8 Alternatively, all specimens may be put into open glass vials during the 24-h temperature and humidity conditioning. The vials must be capped before removal from the conditioning chamber. Each specimen must be weighed within 2 min after opening the vial to minimize the loss or absorption of water vapor while exposed to an uncontrolled humidity environment. While control of humidity is not necessary at this point, the temperature for the weighing should be controlled at 23 °C, the same temperature prescribed for the 24-h storage test.
分类信息
关联关系
研制信息
归口单位: E21.05
相似标准/计划/法规