1.1
本标准指南的目的是描述测试医疗器械碎片和器械材料降解产物(例如磨损颗粒)的原理和方法,以确定其在体内局部和系统水平上激活一系列生物反应的潜力。为了确定装置碎片和降解产物在刺激此类反应中的作用,应评估反应的性质和反应的后果。这是一个新兴领域。从测试结果和相关出版文献中获得的不断更新的信息对于改进研究设计以及碎片/降解产物相关响应的测试结果的预测价值和解释是必要的。在进一步的测试中,这里列出的一些程序可能无法预测对该设备的临床反应-
相关碎片和降解产物。然而,只有继续使用标准方案才能建立最有用的测试方法,并提供可靠的研究终点和测量技术。由于有许多可能和既定的方法来确定与碎片/降解产物相关的反应
体内
,没有说明单一的标准协议。然而,本推荐指南指出了根据预期的生物反应,哪些测试方法最适用,以及测试结果应提供哪些必要的信息。为了解决慢性炎症在夸大设备相关异物反应(FBR)中的一般作用,本标准中的建议包括评估设备相关的促炎反应和随后的组织重塑潜力。
1.2
本文件旨在为用户提供最新的科学知识,有助于更好地描述医疗器械碎片相关反应。
这是为了帮助用户通过考虑已发表文献中适用于其产品的测试原理和方法来优化其颗粒表征和生物相容性评估计划。
1.3
本标准不足以解决导致气体形成或仅由纳米颗粒或溶解金属离子等可溶性物质代表的设备相关降解产物。
1.4
虽然设备的设计和制造应尽可能降低设备中可能释放的物质或颗粒(包括磨损碎片、降解产物和加工残留物)带来的风险,但本标准指南可帮助用户识别磨损碎片和降解产物的存在以及可能发生的后续不良反应。
1.5
尽管本指南基于可用的设备碎片-
相关知识主要基于矫形器械,大多数建议也适用于其他(非矫形)器械领域。
1.6
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.7
本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。
====意义和用途======
5.1
本标准指南用于帮助评估医疗器械(例如,外部通信、植入物和其他身体接触医疗器械)中使用的材料的生物相容性。
它旨在测试颗粒和其他磨损碎片和/或降解产物对FBR和其他(局部和全身)免疫/炎症宿主反应产生的影响。
5.2
用户应仔细考虑所选测试方法的适当性,因为并非所有材料或应用都需要通过本指南进行测试。现有的生物相容性筛选方法可能无法完全预测人类的反应,需要如本文所述的测试方法来不断提高生物相容性测试的可预测性。动物试验在人类结果可预测性方面的有效性取决于研究设计。如果可能,应选择研究终点,以最大限度地减少种间变异,并调查临床相关的生物反应。
虽然测试方法应由用户自行决定,但在选择最合适的测试和研究终点时应考虑以下因素。
5.2.1
设备诱导的反应通常涉及先天免疫和适应性免疫,这可能需要对每种免疫反应类型进行特异性测试。
5.2.1.1
设备相关的适应性免疫反应主要是由于淋巴细胞介导的延迟型超敏反应。
体内
应通过监测过敏和急性毒性反应的任何迹象来评估测试材料(可通过不同途径引入)的致敏性,例如抓挠、震颤和呼吸困难。此外
离体
应考虑对来自相同研究的分离的脾细胞/淋巴细胞的免疫表型进行分析。
5.2.1.2
设备相关的先天免疫反应主要由巨噬细胞介导,可以通过组织病理学评估FBR的程度来评估,包括巨噬细胞在测试材料周围的积聚。
补充的
离体
/
体外
评估可用于额外的基于巨噬细胞的测试,如巨噬细胞免疫表型(促炎M1和抗炎/伤口愈合M2)以及吞噬细胞的碎片摄取(吞噬能力),涉及整个测试材料特性范围。
5.2.2
由于炎症在延长装置相关FBR和促进由此产生的组织重塑中的作用,组织病理学评估应包括免疫/炎症细胞浸润的识别(对代表先天和适应性反应的单个细胞类型进行单独计数)以及相应的组织变化(例如,纤维化、坏死、骨化或骨溶解、血管生成)。免疫/炎症细胞的鉴定可能涉及不同的方法,包括根据需要进行IHC表型分析。
补充的
离体
/
体外
应考虑评估促炎细胞因子与抗炎细胞因子释放的平衡,以及高增殖与低增殖组织反应的产生。
5.2.2.1
由于炎症和炎症后组织变化的迹象可能并不总是明显的,因此应特别注意使用
离体
样本和补充
体外
必要时进行评估。应通过使用细胞活力和细胞毒性测试(包括细胞染色和流式细胞术),将促炎性细胞死亡(坏死)与程序性细胞死亡区分开来(细胞凋亡通常与抗炎反应有关)。考虑到吞噬细胞在适当清除垂死细胞中的重要性-
凋亡细胞的炎症吞噬作用应与“抑制性”炎症吞噬作用区分开来,后者可能由于损伤相关分子模式(DAMP)的释放而导致进一步的细胞/组织损伤。看见
X1.10毫米
了解更多详细信息。
5.2.3
由于装置-组织界面在形成生物反应中的作用,
体内
模型和补充测试应旨在模拟(尽可能多的)设备特定的使用环境。
体内
关节内应用测试材料的动物模型可能有利于矫形材料的测试,而心内/静脉内应用可能更有利于心脏/血管内材料的测试。
5.2.3.1
由于许多可植入材料在临床使用过程中会与血液接触,因此应考虑血液相容性测试的必要性,尤其是在开发新材料时。
用于心血管应用的新材料的开发可能受益于更详细的血液相容性评估,其中可能包括微循环、细胞粘附和白细胞-内皮相互作用。
5.2.4
某种材料(包括其碎片)测试的可预测性可能受益于研究终点和测试方法的选择,这些方法结合了已知治疗应用的临床经验和类似材料的安全问题。
5.2.4.1
一般来说,应根据其测量免疫调节、促炎/抗炎和组织重塑作用的能力来选择研究终点。作为更具体选择的例子,矫形材料的测试应考虑潜在的组织变化,如假体周围骨溶解和假肿瘤,而心血管材料的测试则应考虑潜在溶血、溶栓/血栓形成和促血管生成-
血管生成作用。
5.2.4.2
目前在有效性评估中使用的一些终点可以应用于不良组织重塑的安全性评估(与成骨相关的研究终点的例子可以在
X1.12毫米
).
5.2.4.3
虽然并非所有可能的临床并发症都能在动物试验模型中准确复制,但正确选择的研究终点
体内
和补充
体外
测试可以提高生物相容性测试的总体可预测性(有关可测量研究终点选择的更多详细信息,请参阅
X1.5毫米
).
5.2.5
啮齿动物和其他小动物(例如兔子、豚鼠)传统上用于
体内
生物相容性测试模型。由于伦理和其他方面的考虑,大型动物模型的使用通常受到限制,并且可能保留给更需要模仿与人类相似性的模型(重量、骨骼和关节结构等)。
).
5.3
使用的缩写:
5.3.1
阿尔瓦尔-
无菌淋巴细胞为主的血管炎相关病变。
5.3.2
光盘-
集群分化。
5.3.3
潮湿的,潮湿的-
损伤相关分子模式。
5.3.4
电子数据交换/电子数据交换-
能量色散X射线光谱。
5.3.5
酶联免疫吸附法-
酶联免疫吸附试验。
5.3.6
FBGC公司-
异物巨细胞。
5.3.7
联邦调查局-
异物反应。
5.3.8
红外光谱-
傅里叶变换红外光谱。
5.3.9
H和E-
苏木精和伊红。
5.3.10
HMGB1型-
高移动性分组框1。
5.3.11
热休克蛋白-
热休克蛋白。
5.3.12
细胞间黏附分子1-
细胞间粘附分子-1。
5.3.13
ICP-MS公司-
电感耦合等离子体质谱法。
5.3.14
免疫球蛋白-
免疫球蛋白。
5.3.15
伊尔-
白细胞介素。
5.3.16
拉勒-
鲎试剂。
5.3.17
脂多糖-
脂多糖(内毒素)。
5.3.18
基质金属蛋白酶-
基质金属蛋白酶。
5.3.19
否-
一氧化氮。
5.3.20
一氧化氮合酶/一氧化氮合酶-
一氧化氮合酶/诱导型一氧化氮合酶。
5.3.21
聚合酶链式反应-
聚合酶链式反应。
5.3.22
玫瑰红-
活性氧。
5.3.23
SAA公司-
血清淀粉样蛋白A。
5.3.24
扫描电镜-
扫描电子显微镜。
5.3.25
α-SMA-
α平滑肌肌动蛋白。
5.3.26
TBARS公司-
硫代巴比妥酸反应物质。
5.3.27
转化生长因子-β-
转化生长因子β。
5.3.28
TLR公司-
Toll样受体。
5.3.29
肿瘤坏死因子-α-
肿瘤坏死因子α。
5.3.30
陷阱-
抗酒石酸酸性磷酸酶。
5.3.31
血管内皮生长因子-
血管内皮生长因子。
1.1
The purpose of this standard guide is to describe the principles and approaches to testing of medical device debris and degradation products from device materials (for example, particles from wear) for their potential to activate a cascade of biological responses at local and systemic levels in the body. In order to ascertain the role of device debris and degradation products in stimulating such responses, the nature of the responses and the consequences of the responses should be evaluated. This is an emerging area. The continuously updated information gained from the testing results and related published literature is necessary to improve the study designs, as well as predictive value and interpretation of the test results regarding debris/degradation product related responses. Some of the procedures listed here may, on further testing, not prove to be predictive of clinical responses to device-related debris and degradation products. However, only the continuing use of standard protocols will establish the most useful testing approaches with reliable study endpoints and measurement techniques. Since there are many possible and established ways of determining the debris/degradation product related responses
in vivo
, a single standard protocol is not stated. However, this recommended guide indicates which testing approaches are most applicable per expected biological responses and which necessary information should be supplied with the test results. To address the general role of chronic inflammation in exaggerating device-related foreign body response (FBR), the recommendations in this standard include the assessment of device-related pro-inflammatory responses and subsequent tissue remodeling potential.
1.2
This document is to provide the users with updated scientific knowledge that may help better characterize medical device debris related responses. It is to help the users to optimize their plans for particle characterization and biocompatibility assessment by considering the testing principles and methods available in published literature that are appropriate to their products.
1.3
This standard is not sufficient to address device-related degradation products that result in gas formation or that are exclusively represented by nanoparticles, or soluble species such as dissolved metal ions.
1.4
While devices should be designed and manufactured in such a way as to reduce as far as possible the risks posed by substances or particles (including wear debris, degradation products, and processing residues) that may be released from the device, this standard guide may help users to identify the presence of wear debris and degradation products and subsequent adverse reactions that may occur.
1.5
Although this guide is based on the available device debris-related knowledge that is largely based on orthopedic devices, most of the recommendations are also applicable to other (non-orthopedic) device areas.
1.6
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
This standard guide is to be used to help assess the biocompatibility of materials used in medical devices (for example, externally communicating, implants, and other body contact medical devices). It is designed to test the effect of particles and other wear debris and/or degradation products on the generation of FBR and other (local and systemic) host responses of immune/inflammatory origin.
5.2
The appropriateness of the selected testing methods should be carefully considered by the user since not all materials or applications need to be tested by this guide. Existing biocompatibility screening methods may not be fully predictive of the human response, and testing approaches such as those described here are needed for continuous improvement of the predictability of biocompatibility testing. The effectiveness of animal testing in terms of its predictability of human outcomes is dependent on the study design. If possible, study endpoints should be chosen to minimize interspecies variability and to investigate clinically relevant biological responses. While testing approaches should remain at the user’s discretion, the following should be taken into consideration when selecting most appropriate tests and study endpoints.
5.2.1
Device-induced responses usually involve both innate and adaptive immunities, which raises possible need for specific testing for each of these immune response types.
5.2.1.1
Device-related adaptive immune responses are mostly due to lymphocyte-mediated delayed-type hypersensitivity.
In vivo
allergenicity to a test material (which can be introduced via different routes) should be assessed by monitoring for any signs of allergic and acute toxicity reactions, for example, scratch, tremor, and dyspnea. In addition,
ex vivo
analysis on immunophenotyping of the isolated splenocytes/lymphocytes from the same studies should be considered.
5.2.1.2
Device-related innate immune responses are mostly mediated by macrophages and can be assessed by histopathological assessment of the extent of FBR including macrophage accumulation around the test material. Supplementary
ex vivo
/
in vitro
assessment can be used for additional macrophage-based testing such as macrophage immunophenotyping (proinflammatory M1 and anti-inflammatory/wound healing M2) as well as debris uptake by phagocytes (phagocytozability) involving the entire range of test material characteristics.
5.2.2
Due to the role of inflammation in extending device-related FBR and promoting the resultant tissue remodeling, histopathological assessment should include identification of immune/inflammatory cell infiltration (with separate counts for the individual cell types representing both innate and adaptive responses) as well as corresponding tissue changes (for example, fibrosis, necrosis, ossification or osteolysis, angiogenesis). Identification of immune/inflammatory cells may involve different approaches including IHC phenotyping as needed. Supplementary
ex vivo
/
in vitro
assessment should be considered for assessing the balance in release of pro-inflammatory versus anti-inflammatory cytokines as well as generation of hyper-proliferative versus hypo-proliferative tissue responses.
5.2.2.1
Since the signs of inflammation and post-inflammatory tissue changes may not be always apparent, special attention should be given to the assessment of debris-related inflammogenic and tissue remodeling potentials using
ex vivo
specimens and supplementary
in vitro
assessment when needed. Pro-inflammatory cell death (necrosis) should be distinguished from programmed cell death (apoptosis usually associated with anti-inflammatory responses) by using cell viability and cytotoxicity testing involving cellular staining and flow cytometry. Given the importance of phagocytes in proper clearance of dying cells, normal non-phlogistic phagocytosis of cells undergoing apoptosis should be distinguished from “frustrated” phlogistic phagocytosis which may result in further cell/tissue damage due to the release of damage-associated molecular patterns (DAMP). See
X1.10
for more details.
5.2.3
Due to the role of the device-tissue interface in shaping biological responses,
in vivo
models as well as supplementary testing should be aimed to simulate (as much as possible) device-specific use environments.
In vivo
animal models with intra-articular applications of a test material may be beneficial for testing of orthopedic materials, while intracardiac/intravenous applications may be more beneficial for testing of cardio/endovascular materials.
5.2.3.1
Since many implantable materials come in contact with blood during their clinical use, the need for hemocompatibility testing should be considered, especially when developing new materials. Development of new materials for cardiovascular applications may benefit from a more detailed hemocompatibility assessment, which could include microcirculation, cell adhesion, and leukocyte-endothelial interactions.
5.2.4
The predictability of testing for a certain material, including its debris, may benefit from the choice of study endpoints and testing approaches that incorporates clinical experience from known therapeutic applications and safety issues of similar materials.
5.2.4.1
In general, the study endpoints should be selected per their ability to measure immunomodulatory, pro/anti-inflammogenic, and tissue remodeling effects. As the examples of more specific choices, testing for an orthopedic material should take into consideration potential tissue changes such as periprosthetic osteolysis and pseudotumors, while testing for a cardiovascular material should take into consideration potential hemolytic, thrombolytic/thrombogenic, and pro-angiogenic effects.
5.2.4.2
Some endpoints currently used in effectiveness assessments can be applied to the safety assessment of adverse tissue remodeling (examples of osteogenesis-related study endpoints can be found in
X1.12
).
5.2.4.3
While not all possible clinical complications can be accurately replicated in animal testing models, the properly selected study endpoints for
in vivo
and supplementary
in vitro
testing can enhance the overall predictability of biocompatibility testing (more details on the choice of measurable study endpoints are provided in
X1.5
).
5.2.5
Rodents and other small animals (for example, rabbit, guinea pig) are traditionally used for
in vivo
biocompatibility testing models. Use of larger animal models is usually limited due to ethical and other concerns and may be reserved for models in higher need for imitating similarities with humans (weight, bone and joint structure, etc.).
5.3
Abbreviations Used:
5.3.1
ALVAL—
Aseptic lymphocyte-dominated vasculitis-associated lesion.
5.3.2
CD—
Cluster differentiation.
5.3.3
DAMP—
Damage-associated molecular pattern.
5.3.4
EDS/EDAX—
Energy dispersive X-ray spectroscopy.
5.3.5
ELISA—
Enzyme-linked immunosorbent assay.
5.3.6
FBGC—
Foreign body giant cell.
5.3.7
FBR—
Foreign body response.
5.3.8
FTIR—
Fourier-transform infrared (spectroscopy).
5.3.9
H&E—
Hematoxylin and eosin.
5.3.10
HMGB1—
High-mobility group box 1.
5.3.11
HSP—
Heat shock protein.
5.3.12
ICAM1—
Intercellular adhesion molecule-1.
5.3.13
ICP-MS—
Inductively coupled plasma–mass spectrometry.
5.3.14
Ig—
Immunoglobulin.
5.3.15
IL—
Interleukin.
5.3.16
LAL—
Limulus amebocyte lysate.
5.3.17
LPS—
Lipopolysaccharide (endotoxin).
5.3.18
MMP—
Matrix metalloproteinase.
5.3.19
NO—
Nitric oxide.
5.3.20
NOS/iNOS—
Nitric oxide synthase / Inducible nitic oxide synthase.
5.3.21
PCR—
Polymerase chain reaction.
5.3.22
ROS—
Reactive oxygen species.
5.3.23
SAA—
Serum amyloid A.
5.3.24
SEM—
Scanning electron microscopy.
5.3.25
α-SMA—
Alpha-smooth muscle actin.
5.3.26
TBARS—
Thiobarbituric acid reactive substances.
5.3.27
TGF-β—
Transforming growth factor-beta.
5.3.28
TLR—
Toll-like receptor.
5.3.29
TNF-α—
Tumor necrosis factor-alpha.
5.3.30
TRAP—
Tartrate-resistant acid phosphatase.
5.3.31
VEGF—
Vascular endothelial growth factor.