首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E824-10(2018)e1
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Transfer of Calibration From Reference to Field Radiometers 从参考到现场辐射计传输校准的标准测试方法
发布日期: 2018-04-15
1.1 本标准中描述的方法适用于将校准从参考转移到用于测量和监测室外辐射暴露水平的现场辐射计。本标准已与ISO 9847协调。 1.2 本试验方法适用于现场辐射计,无论采用何种辐射受体,但仅限于具有约180°(2πSteradian)场角的辐射计。 1.3 本试验方法涵盖的校准使用自然阳光作为光源。 1.4 野外辐射计的校准可以在倾斜和水平(水平与地球成0°角)条件下进行。基本要求是,基准辐射计应在与水平方向基本相同的倾角下进行校准,该倾角与校准转移中使用的倾角相同。 1.5 主要参考仪器不得用作现场仪器,其暴露在阳光下的时间应限于校准或相互比较。 注1: 在定期进行校准的实验室,建议维护一组包含在每次校准中的两个或三个参考辐射计。这些用作检测标准参考仪器中任何不稳定性或不规则性的控制。 1.6 参考标准仪器的储存方式应确保不会降低其校准性能。 1.7 太阳总日射强度计的校准方法应可通过参考标准仪器(测试方法)的校准方法追溯到世界辐射参考(WRR) G167页 和 E816 )窄带和宽带紫外线辐射计的校准方法应可追溯至国家标准与技术研究所(NIST)或其他国际公认的国家标准实验室(测试方法 G138页 ). 1.8 本标准并非旨在解决与其使用相关的所有安全问题(如有)。 本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.9 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 所述方法代表了使用标准参考辐射计校准现场辐射计的首选方法。其他方法包括使用光学工作台和基本上是人工光源的点光源。虽然这些方法对余弦和方位角校正分析有用,但它们存在前景因子和方向性问题。本试验方法不包括使用人工源在室内传输校准。 5.2 当使用已校准的参考全球日射强度计并可追溯到世界辐射参考(WRR)时,可实现全球日射强度计校准的可追溯性。就本试验方法而言,如果校准链中的母仪器参与了在瑞士达沃斯世界辐射中心(WRC)进行的国际太阳热量比较(IPC),则应建立可追溯性。窄带和宽带辐射计的校准可追溯性是在使用已校准且可追溯至美国国家标准与技术研究所(NIST)或其他国家标准组织的参考紫外线辐射计的方法时实现的。见Zerlaut 4. 讨论WRR、IPC及其结果。 5.2.1 参考总日射强度计(例如,在所有波长下测量半球形太阳辐射的日射强度计)应通过阴影校准- 针对以下仪器之一的磁盘或组件求和方法: 5.2.1.1 参与世界气象组织认可的IPC的绝对空腔太阳热量计(因此具有WRR折减系数), 5.2.1.2 (在局部或区域比较中)与满足中给出要求的绝对空腔太阳热量计进行相互比较的绝对空腔辐射计 5.2.1.1 . 5.2.1.3 WMO一级日射强度计,通过从此类绝对腔体直接传输进行校准。 5.2.2 或者,参考日射强度计可以通过直接从世界气象组织(WMO)的一级日射强度计转移进行校准,该日射强度计通过阴影圆盘法相对于具有WRR折减系数的绝对空腔日射强度计进行校准,或者通过直接从WMO标准日射强度计转移进行校准(见WMO指南WMO-No.8) 5. 讨论太阳辐射计的分类)。 注4: 参与上述相互比较且在±0范围内的任何绝对辐射计。 5. % 在任何此类相互比较中比较的所有类似仪器的平均值中,应视为适合作为主要参考仪器。 5.2.3 参考紫外线辐射计,无论其测量的是总紫外线太阳辐射,还是窄带UV-A或UV-B辐射,或定义的窄带紫外线辐射段,均应通过以下方式之一进行校准: 5.2.3.1 通过与可追溯至NIST或其他国家的适当国家标准组织的标准光谱辐照度源进行比较(使用适当的滤波器校正因子), 6. 5.2.3.2 通过与光谱辐射计的适当波段中的积分光谱辐照度进行比较,该光谱辐射计本身已根据此类标准光谱辐照度源进行校准,以及 5.2.3.3 与参与区域或国家光谱辐射计比对的光谱辐射计相比,其结果具有参考质量。 注5: 使用光谱辐射计校准参考紫外线辐射计,或根据标准光谱辐照度源(例如氘或1000 W卤钨灯)直接校准是试验方法的主题 G138页 . 5.3 所采用的校准方法假设,在测试仪器温度补偿施加的约束范围内(忽略余弦误差),获得的值的精度与时间无关。该方法允许确定倾斜对测试仪器光受体灵敏度的可能影响。 5.4 辐射计室外校准的主要优点是,在真实辐照度条件下,所有类型的辐射计都与单个参考相关。 5.5 室外校准方法的主要缺点是所需时间和自然环境不受控制的事实(但校准因此包括同时受环境影响的参考和测试辐射计的所有仪器特性)。 环境条件,如地面反射率或阴影,或两者,必须最小化,并对两种仪器产生类似的影响。 5.6 参考辐射计必须与测试辐射计的类型相同,因为仪器之间光谱灵敏度的任何差异都会导致错误校准。读者可参考ISO TR 9673 7. 和ISO TR 9901 8. 讨论可用仪器的类型及其使用。
1.1 The method described in this standard applies to the transfer of calibration from reference to field radiometers to be used for measuring and monitoring outdoor radiant exposure levels. This standard has been harmonized with ISO 9847. 1.2 This test method is applicable to field radiometers regardless of the radiation receptor employed, but is limited to radiometers having approximately 180° (2π Steradian), field angles. 1.3 The calibration covered by this test method employs the use of natural sunshine as the source. 1.4 Calibrations of field radiometers may be performed at tilt as well as horizontal (at 0° from the horizontal to the earth). The essential requirement is that the reference radiometer shall have been calibrated at essentially the same tilt from horizontal as the tilt employed in the transfer of calibration. 1.5 The primary reference instrument shall not be used as a field instrument and its exposure to sunlight shall be limited to calibration or intercomparisons. Note 1: At a laboratory where calibrations are performed regularly it is advisable to maintain a group of two or three reference radiometers that are included in every calibration. These serve as controls to detect any instability or irregularity in the standard reference instrument. 1.6 Reference standard instruments shall be stored in a manner as to not degrade their calibration. 1.7 The method of calibration specified for total solar pyranometers shall be traceable to the World Radiometric Reference (WRR) through the calibration methods of the reference standard instruments (Test Methods G167 and E816 ), and the method of calibration specified for narrow- and broad-band ultraviolet radiometers shall be traceable to the National Institute of Standards and Technology (NIST), or other internationally recognized national standards laboratories (Test Method G138 ). 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 The methods described represent the preferable means for calibration of field radiometers employing standard reference radiometers. Other methods involve the employment of an optical bench and essentially a point source of artificial light. While these methods are useful for cosine and azimuth correction analyses, they suffer from foreground view factor and directionality problems. Transfer of calibration indoors using artificial sources is not covered by this test method. 5.2 Traceability of calibration of global pyranometers is accomplished when employing the method using a reference global pyranometer that has been calibrated, and is traceable to the World Radiometric Reference (WRR). For the purposes of this test method, traceability shall have been established if a parent instrument in the calibration chain participated in an International Pyrheliometric Comparison (IPC) conducted at the World Radiation Center (WRC) in Davos, Switzerland. Traceability of calibration of narrow- and broad-band radiometers is accomplished when employing the method using a reference ultraviolet radiometer that has been calibrated and is traceable to the National Institute of Standards and Technology (NIST), or other national standards organizations. See Zerlaut 4 for a discussion of the WRR, the IPC's and their results. 5.2.1 The reference global pyranometer (for example, one measuring hemispherical solar radiation at all wavelengths) shall have been calibrated by the shading-disk or component summation method against one of the following instruments: 5.2.1.1 An absolute cavity pyrheliometer that participated in a WMO sanctioned IPC's (and therefore possesses a WRR reduction factor), 5.2.1.2 An absolute cavity radiometer that has been intercompared (in a local or regional comparison) with an absolute cavity pyrheliometer meeting the requirements given in 5.2.1.1 . 5.2.1.3 A WMO First Class pyrheliometer that was calibrated by direct transfer from such an absolute cavity. 5.2.2 Alternatively, the reference pyranometer may have been calibrated by direct transfer from a World Meteorological Organization (WMO) First Class pyranometer that was calibrated by the shading-disk method against an absolute cavity pyrheliometer possessing a WRR reduction factor, or by direct transfer from a WMO Standard Pyranometer (see WMO's Guide WMO—No. 8 5 for a discussion of the classification of solar radiometers). Note 4: Any of the absolute radiometers participating in the above intercomparisons and being within ±0.5 % of the mean of all similar instruments compared in any of those intercomparisons, shall be considered suitable as the primary reference instrument. 5.2.3 The reference ultraviolet radiometer, regardless of whether it measures total ultraviolet solar radiation, or narrow-band UV-A or UV-B radiation, or a defined narrow band segment of ultraviolet radiation, shall have been calibrated by one of the following: 5.2.3.1 By comparison to a standard source of spectral irradiance that is traceable to NIST or to the appropriate national standards organizations of other countries (using appropriate filter correction factors), 6 5.2.3.2 By comparison to the integrated spectral irradiance in the appropriate wavelength band of a spectroradiometer that has itself been calibrated against such a standard source of spectral irradiance, and 5.2.3.3 By comparison to a spectroradiometer that has participated in a regional or national Intercomparison of Spectroradiometers, the results of which are of reference quality. Note 5: The calibration of reference ultraviolet radiometers using a spectroradiometer, or by direct calibration against standard sources of spectral irradiance (for example, deuterium or 1000 W tungsten-halogen lamps) is the subject of Test Method G138 . 5.3 The calibration method employed assumes that the accuracy of the values obtained are independent of time of year within the constraints imposed by the test instrument's temperature compensation (neglecting cosine errors). The method permits the determination of possible tilt effects on the sensitivity of the test instrument's light receptor. 5.4 The principal advantage of outdoor calibration of radiometers is that all types of radiometers are related to a single reference under realistic irradiance conditions. 5.5 The principal disadvantages of the outdoor calibration method are the time required and the fact that the natural environment is not subject to control (but the calibrations therefore include all of the instrumental characteristics of both the reference and test radiometers that are influenced simultaneously by the environment). Environmental circumstances such as ground reflectance or shading, or both, must be minimized and affect both instruments similarly. 5.6 The reference radiometer must be of the same type as the test radiometer, since any difference in spectral sensitivity between instruments will result in erroneous calibrations. The reader is referred to ISO TR 9673 7 and ISO TR 9901 8 for discussions of the types of instruments available and their use.
分类信息
关联关系
研制信息
归口单位: G03.09
相似标准/计划/法规