首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E521-25
到馆提醒
收藏跟踪
购买正版
Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation 使用带电粒子照射研究中子辐射损伤的影响的标准实践
发布日期: 2025-02-01
1.1 该实践提供了对金属和合金进行带电粒子辐照的指导,尽管许多方法也可以应用于陶瓷材料。它通常仅限于研究由停留在样品中的低穿透力离子诱导的微观结构和微观化学变化。可以直接测量密度变化,并推断其他性质的变化。该信息可用于估计中子辐照将导致的类似变化。更一般地说,该信息对于推断各种材料和辐照条件的辐射损伤的基本机制是有价值的。 1.2 在出现“模拟”一词的地方,应理解为暗示为了阐明损伤机制的目的对相关中子辐照环境的近似。一致性的程度可以从差到几乎精确。目的是在中子和带电粒子辐照的一个或多个方面之间产生对应关系,使得在辐照或材料参数与材料响应之间建立基本关系。 1.3 做法如下: 部分 意义和用途 4 标本制备 9 辐照技术(包括注氦) 10 损害计算 11 后照射检查 12– 14 结果报告 15 相关性和解释 16– 20 1.4 以SI单位表示的值将被视为标准值。SI单位后括号中给出的值仅供参考,不被视为标准值。 1.5 本标准并不旨在解决与其使用相关的所有安全性问题(如果有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践并确定法规限制的适用性。 1.6 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ======意义和用途====== 4.1 带电粒子辐照实验的一个特点是对大多数重要辐照条件(如剂量、剂量率、温度和存在的气体量)进行精确、单独的控制。额外的属性是样品没有诱导的放射性活化,并且一般来说,照射时间从几年到几个小时大幅压缩,以实现与在位移中测量的相当的损伤每个原子的ts(dpa)。这种实验的一个重要应用是研究暴露于目前不存在的环境的材料中可能发生的辐射效应,例如在聚变反应堆中使用的第一壁材料中。 4.2 离子轰击的主要缺点源于复杂合金中微观结构演化过程的损伤速率或温度依赖性,或两者兼而有之。不能假设通过增加位移速率,即使辐照温度有相应的变化,损伤演化的时间尺度也可以相对地压缩。此外,将损伤产生限制在薄层中只是(通常 ∼ 1 μ m)的照射表面以下可能会出现严重的并发症。因此,必须强调的是,这些实验和实践是为了研究目的,而不是为了材料的认证或鉴定。4.3 本实践涉及使用带电粒子在金属和合金的微观结构中产生辐射诱导的变化。利用带电粒子对力学行为的研究包括在实践中 E821 .
1.1 This practice provides guidance on performing charged-particle irradiations of metals and alloys, although many of the methods may also be applied to ceramic materials. It is generally confined to studies of microstructural and microchemical changes induced by ions of low-penetrating power that come to rest in the specimen. Density changes can be measured directly and changes in other properties can be inferred. This information can be used to estimate similar changes that would result from neutron irradiation. More generally, this information is of value in deducing the fundamental mechanisms of radiation damage for a wide range of materials and irradiation conditions. 1.2 Where it appears, the word “simulation” should be understood to imply an approximation of the relevant neutron irradiation environment for the purpose of elucidating damage mechanisms. The degree of conformity can range from poor to nearly exact. The intent is to produce a correspondence between one or more aspects of the neutron and charged-particle irradiations such that fundamental relationships are established between irradiation or material parameters and the material response. 1.3 The practice appears as follows: Section Significance and Use 4 Specimen Preparation 9 Irradiation Techniques (including Helium Injection) 10 Damage Calculations 11 Pos-tirradiation Examination 12 – 14 Reporting of Results 15 Correlation and Interpretation 16 – 20 1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 A characteristic advantage of charged-particle irradiation experiments is the precise, individual control over most of the important irradiation conditions such as dose, dose rate, temperature, and quantity of gases present. Additional attributes are the lack of induced radioactivation of specimens and, in general, a substantial compression of irradiation time, from years to hours, to achieve comparable damage as measured in displacements per atom (dpa). An important application of such experiments is the investigation of radiation effects that may occur in materials exposed to environments which do not currently exist, such as in first wall materials used in fusion reactors. 4.2 The primary shortcoming of ion bombardments stems from the damage rate, or temperature dependences of the microstructural evolutionary processes in complex alloys, or both. It cannot be assumed that the time scale for damage evolution can be comparably compressed for all processes by increasing the displacement rate, even with a corresponding shift in irradiation temperature. In addition, the confinement of damage production to a thin layer just (often ∼ 1 μm) below the irradiated surface can present substantial complications. It must be emphasized, therefore, that these experiments and this practice are intended for research purposes and not for the certification or the qualification of materials. 4.3 This practice relates to the generation of irradiation-induced changes in the microstructure of metals and alloys using charged particles. The investigation of mechanical behavior using charged particles is covered in Practice E821 .
分类信息
关联关系
研制信息
归口单位: E10.05
相似标准/计划/法规