首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA ACE60048
到馆提醒
收藏跟踪
购买正版
Stoichiometry of Coagulation Revisited 凝血化学计量的再认识
发布日期: 2004-06-17
原水特性与相应最小值之间的关系 研究了有效明矾剂量(MEADs)。测试原水的影响 混凝最低有效化学条件的特征,以及 在某些情况下,随后的过滤、胶体颗粒的浓度和自然 模型原水中的有机物(NOM)发生了系统性变化。罐子测试 使用不同胶体和NOM浓度的水进行试验, 对于胶体浓度和NOM浓度的每种组合,最小有效浓度 观察混凝剂用量对沉淀和过滤浊度和浊度的去除效果 医生。 单分散二氧化硅颗粒(直径129 nm)和来自大颗粒的NOM 弗吉尼亚州的阴暗沼泽被用于准备测试水域。这个 无NOM低硅水凝结的最小有效明矾剂量 随着二氧化硅浓度的增加而减少,而随着 增加高硅水的硅浓度。在低硅水中,接触 絮体形成的机会受到低固体体积的限制,去除也很困难 通过扫描絮凝机制实现。增加内部二氧化硅浓度 这一范围提供了额外的絮体体积,从而减少了生产所需的明矾剂量 诱导扫描絮凝。一旦满足有效絮凝的要求 当二氧化硅浓度足够时,最小有效明矾剂量增加 随着二氧化硅的增加,其化学计量比增加。在NOM存在下去除二氧化硅 显示了两个截然不同的结果。首先,在较低的二氧化硅浓度下,低浓度 NOM(0.75 mg/L)可能会显著降低最低有效明矾剂量 通过促进铝和/或铝NOM固体的沉淀。使用 硫酸盐的加入表明多价阴离子部分的存在,例如 与NOM中的情况一样,氢氧化铝沉淀会加速絮体的形成。 这个 简单阴离子(如氯化物)的存在影响要小得多。其次是 最小有效明矾剂量与剂量呈强线性化学计量关系 在所有二氧化硅浓度下的NOM浓度,其中NOM主要是明矾 低二氧化硅浓度下的需求。水的最小有效明矾剂量 NOM和二氧化硅颗粒含量均较高,这在一定程度上是添加剂;两者都增加了 随着二氧化硅和NOM的增加。总之,NOM控制了明矾的需求,从 将DOC和浊度均较低的水的明矾用量降低到要求的水平 高DOC浓度下的化学计量增加。包括10个参考文献、表格和图表。
The relationship between raw water characteristics and corresponding minimum effective alum doses (MEADs) was investigated. To test the effects of raw water characteristics on minimum effective chemical conditions for coagulation and, in some cases, subsequent filtration, the concentrations of colloidal particles and natural organic matter (NOM) in model raw waters were systematically varied. Jar tests were performed using waters with varying colloidal and NOM concentrations and, for each combination of colloidal and NOM concentrations, the minimum effective coagulant dose was observed for the removal of settled and filtered turbidity and DOC. Monodisperse silica particles (129 nm in diameter) and NOM from the Great Dismal Swamp in Virginia were used in preparing the waters to be tested. The minimum effective alum dose for the coagulation of low silica waters without NOM decreased as silica concentration increased, whereas it increased proportionally with increasing silica concentration for high silica waters. At low silica waters, contact opportunity for floc formation is limited by low solid volume and removal is achieved via a sweep flocculation mechanism. Increasing silica concentration within this range provides additional floc volume thereby reducing the alum dose required to induce sweep flocculation. Once the requirement for effective flocculation is met by sufficient silica concentration, the minimum effective alum dose increases stoichiometrically with increasing silica. Removal of silica in the presence of NOM showed two distinct results. First, at low silica concentration, the presence of low NOM (0.75 mg/L) lowered the minimum effective alum dose dramatically, possibly by promoting the precipitation of Al and/or Al-NOM solids. Jar tests conducted with the addition of sulfate suggest that the presence of multivalent anionic moieties, such as those in NOM, accelerate floc formation as aluminum hydroxide precipitate. The presence of simple anions (such as chloride) had much less effect. Second, the minimum effective alum dose showed a strong linear stoichiometric relationship with NOM concentration at all silica concentrations, with NOM dominating the alum demand at low silica concentrations. The minimum effective alum doses for waters high in both NOM and silica particles were somewhat additive; they increased both as silica and NOM increased. In summary, NOM controlled the alum demand, from reducing alum dosages for waters low in both DOC and turbidity to requiring stoichiometric increase at high DOC concentrations. Includes 10 references, tables, figures.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规