首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2760-19e3
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Creep-Fatigue Crack Growth Testing 蠕变疲劳裂纹扩展试验的标准试验方法
发布日期: 2019-11-01
1.1 本试验方法包括使用预裂紧凑型C(T)试样在单轴循环力下测定标称均匀材料的蠕变疲劳裂纹扩展性能。它涉及疲劳循环,具有足够长的加载/卸载速率或保持时间,或两者兼而有之,以在裂纹尖端引起蠕变变形,蠕变变形导致每个加载循环的裂纹扩展增强。它旨在作为蠕变疲劳测试的指南,以支持材料研发、机械设计、工艺和质量控制、产品性能和故障分析等活动。因此,这种方法需要测试至少两个产生重叠裂纹扩展速率数据的试样。 导致蠕变疲劳变形和增强裂纹扩展的循环条件因材料和给定材料的温度而异。假设环境(如时间依赖性氧化)对提高裂纹扩展速率的影响包含在测试结果中;因此,在代表预期应用的环境中进行测试至关重要。 1.2 在蠕变/疲劳试验中观察到两种类型的裂纹扩展机制: 1. 时变晶间蠕变 2. 周期依赖性穿晶疲劳。两种开裂机制之间的相互作用是复杂的,取决于材料、施加力循环的频率和力循环的形状。 计划测试时,必须选择模拟或复制服务负载的负载频率和波形。 1.3 在蠕变疲劳裂纹扩展试验中,材料通常观察到两种蠕变行为:蠕变延性和蠕变脆性 ( 1. ) 2. 对于断裂延性为10%或更高的高蠕变延性材料,蠕变应变占主导地位,蠕变疲劳裂纹扩展伴随着裂纹尖端附近的大量时间依赖蠕变应变。在蠕变脆性材料中,蠕变疲劳裂纹扩展发生在低蠕变延性下。因此,时间依赖蠕变应变与裂纹尖端附近的伴随弹性应变相当或更小。 1.3.1 在蠕变脆性材料中,蠕变- 每个循环的疲劳裂纹扩展率或 da/dN ,以循环应力强度参数Δ的大小表示 K 这些裂纹扩展速率取决于加载/卸载速率和在最大载荷下的保持时间、力比、裂纹扩展速率和裂纹扩展速率, R ,以及测试温度(参见 附件A1 更多细节)。 1.3.2 在蠕变延性材料中, (da/dt) 平均值 ,表示为平均幅度的函数 C t 参数, C t ) 平均值 ( 2. ) . 注1: 之间的相关性 (da/dt) 平均值 和 C t ) 平均值 已被证明与保持时间无关 ( 2. , 3. ) 用于具有10%或更高断裂延展性的高蠕变延展性材料。 1.4 以这种方式得出的裂纹扩展速率表示为相关裂纹尖端参数的函数,被确定为一种材料属性,可用于在使用和寿命评估方法中承受类似载荷条件的结构部件的完整性评估。 1.5 这种做法的使用仅限于试样,不包括全尺寸组件、结构或消费品的测试。 1.6 这种做法主要旨在提供在高温下运行的工程结构中评估裂纹状缺陷所需的材料性能,在高温下,蠕变变形和损伤是一个设计问题,并且在最大载荷下受到循环载荷,包括缓慢的加载/卸载速率或保持时间,或两者兼而有之。 1.7 本规程适用于确定恒幅载荷控制试验的裂纹扩展速率特性,该试验具有受控的加载/卸载速率或最大载荷下的保持时间,或两者兼而有之。它主要涉及在载荷控制模式下承受单轴载荷的C(T)试样的测试。 该程序的重点是在给定循环内同时产生蠕变和疲劳变形和损伤的测试。它不包括顺序产生蠕变和疲劳损伤的块循环测试。可以从在这种条件下进行的测试中确定的数据可以表征被测材料的蠕变疲劳裂纹扩展行为。 1.8 这种做法适用于温度和保持时间,与时间无关的非弹性应变相比,裂纹尖端的时间依赖非弹性应变的幅度很大。对温度、压力、湿度、介质等环境因素没有限制,只要它们在整个测试过程中得到控制,并在数据报告中详细说明。 注2: 术语 非弹性 本文中使用的术语“应变”是指所有非弹性应变。术语 塑料 本文中使用的术语“非蠕变”仅指非弹性应变的时间无关(即非蠕变)分量。 1.9 以国际单位制表示的值应被视为标准值。テントSI单位后括号中给出的值仅供参考,不被视为标准值。 1.10 本标准并不旨在解决与其使用相关的所有安全问题(如果有的话)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。 1.11 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 =====意义和用途====== 4.1 蠕变疲劳裂纹扩展测试通常在高温下在一定频率和保持时间范围内进行,涉及顺序或同时施加必要的载荷条件,以产生蠕变变形/损伤增强的裂纹尖端循环变形/损伤,反之亦然。除非在真空或惰性环境中进行此类测试,否则氧化也可能导致与损伤累积相关的重要相互作用效应。蠕变疲劳裂纹扩展试验的目的是确定以下材料的性能数据 一 用于在高温下运行的工程结构的损伤状态分析的评估输入数据, b 材料特性,或 c 开发和验证用于以低频或稳定运行周期或其组合进行循环使用的高温部件的设计和寿命评估规则。 4.2 在每种情况下,建议根据试验方法获得补充的连续循环疲劳数据(以相同的加载/卸载速率收集)、相同材料和试验温度的蠕变裂纹扩展数据 E1457 ,以及根据试验方法得出的蠕变疲劳裂纹形成数据 E2714 高温下的侵蚀性环境会显著影响蠕变疲劳裂纹扩展行为。在研究和设计数据生成过程中,必须注意温度和环境的正确选择和控制。 4.3 该测试方法的结果可按如下方式使用: 4.3.1 为存在高温循环载荷的耐损伤应用制定材料选择标准和检验要求。 4.3.2 定量确定冶金、制造、操作温度和载荷变量对蠕变疲劳裂纹扩展寿命的单独和组合影响。 4.4 从该试验方法中获得的结果是针对蠕变疲劳失效的裂纹主导状态而设计的,不应适用于具有广泛蠕变损伤的结构中的裂纹。允许在裂纹尖端周围的小区域内发生局部损伤,但不允许在与裂纹尺寸或剩余韧带尺寸相当的区域内发生。
1.1 This test method covers the determination of creep-fatigue crack growth properties of nominally homogeneous materials by use of pre-cracked compact type, C(T), test specimens subjected to uniaxial cyclic forces. It concerns fatigue cycling with sufficiently long loading/unloading rates or hold-times, or both, to cause creep deformation at the crack tip and the creep deformation be responsible for enhanced crack growth per loading cycle. It is intended as a guide for creep-fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. Therefore, this method requires testing of at least two specimens that yield overlapping crack growth rate data. The cyclic conditions responsible for creep-fatigue deformation and enhanced crack growth vary with material and with temperature for a given material. The effects of environment such as time-dependent oxidation in enhancing the crack growth rates are assumed to be included in the test results; it is thus essential to conduct testing in an environment that is representative of the intended application. 1.2 Two types of crack growth mechanisms are observed during creep/fatigue tests: (1) time-dependent intergranular creep and (2) cycle dependent transgranular fatigue. The interaction between the two cracking mechanisms is complex and depends on the material, frequency of applied force cycles and the shape of the force cycle. When tests are planned, the loading frequency and waveform that simulate or replicate service loading must be selected. 1.3 Two types of creep behavior are generally observed in materials during creep-fatigue crack growth tests: creep-ductile and creep-brittle ( 1 ) 2 . For highly creep-ductile materials that have rupture ductility of 10 % or higher, creep strains dominate and creep-fatigue crack growth is accompanied by substantial time-dependent creep strains near the crack tip. In creep-brittle materials, creep-fatigue crack growth occurs at low creep ductility. Consequently, the time-dependent creep strains are comparable to or less than the accompanying elastic strains near the crack tip. 1.3.1 In creep-brittle materials, creep-fatigue crack growth rates per cycle or da/dN , are expressed in terms of the magnitude of the cyclic stress intensity parameter, Δ K . These crack growth rates depend on the loading/unloading rates and hold-time at maximum load, the force ratio, R , and the test temperature (see Annex A1 for additional details). 1.3.2 In creep-ductile materials, the average time rates of crack growth during a loading cycle, (da/dt) avg , are expressed as a function of the average magnitude of the C t parameter, (C t ) avg ( 2 ) . Note 1: The correlations between (da/dt) avg and (C t ) avg have been shown to be independent of hold-times ( 2 , 3 ) for highly creep-ductile materials that have rupture ductility of 10 percent or higher. 1.4 The crack growth rates derived in this manner and expressed as a function of the relevant crack tip parameter(s) are identified as a material property which can be used in integrity assessment of structural components subjected to similar loading conditions during service and life assessment methods. 1.5 The use of this practice is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.6 This practice is primarily aimed at providing the material properties required for assessment of crack-like defects in engineering structures operated at elevated temperatures where creep deformation and damage is a design concern and are subjected to cyclic loading involving slow loading/unloading rates or hold-times, or both, at maximum loads. 1.7 This practice is applicable to the determination of crack growth rate properties as a consequence of constant-amplitude load-controlled tests with controlled loading/unloading rates or hold-times at the maximum load, or both. It is primarily concerned with the testing of C(T) specimens subjected to uniaxial loading in load control mode. The focus of the procedure is on tests in which creep and fatigue deformation and damage is generated simultaneously within a given cycle. It does not cover block cycle testing in which creep and fatigue damage is generated sequentially. Data which may be determined from tests performed under such conditions may characterize the creep-fatigue crack growth behavior of the tested materials. 1.8 This practice is applicable to temperatures and hold-times for which the magnitudes of time-dependent inelastic strains at the crack tip are significant in comparison to the time-independent inelastic strains. No restrictions are placed on environmental factors such as temperature, pressure, humidity, medium and others, provided they are controlled throughout the test and are detailed in the data report. Note 2: The term inelastic is used herein to refer to all nonelastic strains. The term plastic is used herein to refer only to time-independent (that is non-creep) component of inelastic strain. 1.9 The values stated in SI units are to be regarded as standard. テントThe values given in parentheses after SI units are provided for information only and are not considered standard. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 Creep-fatigue crack growth testing is typically performed at elevated temperatures over a range of frequencies and hold-times and involves the sequential or simultaneous application of the loading conditions necessary to generate crack tip cyclic deformation/damage enhanced by creep deformation/damage or vice versa. Unless such tests are performed in vacuum or an inert environment, oxidation can also be responsible for important interaction effects relating to damage accumulation. The purpose of creep-fatigue crack growth tests can be to determine material property data for (a) assessment input data for the damage condition analysis of engineering structures operating at elevated temperatures, (b) material characterization, or (c) development and verification of rules for design and life assessment of high-temperature components subject to cyclic service with low frequencies or with periods of steady operation, or a combination thereof. 4.2 In every case, it is advisable to have complementary continuous cycling fatigue data (gathered at the same loading/unloading rate), creep crack growth data for the same material and test temperature(s) as per Test Method E1457 , and creep-fatigue crack formation data as per Test Method E2714 . Aggressive environments at high temperatures can significantly affect the creep-fatigue crack growth behavior. Attention must be given to the proper selection and control of temperature and environment in research studies and in generation of design data. 4.3 Results from this test method can be used as follows: 4.3.1 Establish material selection criteria and inspection requirements for damage tolerant applications where cyclic loading at elevated temperature is present. 4.3.2 Establish, in quantitative terms, the individual and combined effects of metallurgical, fabrication, operating temperature, and loading variables on creep-fatigue crack growth life. 4.4 The results obtained from this test method are designed for crack dominant regimes of creep-fatigue failure and should not be applied to cracks in structures with wide-spread creep damage. Localized damage in a small zone around the crack tip is permissible, but not in a zone that is comparable in size to the crack size or the remaining ligament size.
分类信息
关联关系
研制信息
归口单位: E08.06
相似标准/计划/法规
现行
GB/T 42903-2023
金属材料 蠕变裂纹及蠕变-疲劳裂纹扩展速率测定方法
Metallic materials—Testing methods for creep crack and creep-fatigue crack growth rates
2023-08-06
现行
WRC 512
Creep and Creep/Fatigue Crack Growth Modeling and Testing Methods Relevant to Life Assessment of Cracked Components
与裂纹部件寿命评估相关的蠕变和蠕变/疲劳裂纹扩展建模和试验方法
现行
ASTM E647-24
Standard Test Method for Measurement of Fatigue Crack Growth Rates
疲劳裂纹扩展速率测量的标准试验方法
2024-05-01
现行
BS ISO 12108-2018
Metallic materials. Fatigue testing. Fatigue crack growth method
金属材料 疲劳测试 疲劳裂纹扩展法
2018-07-19
现行
KS B ISO 12108(2019 Confirm)
금속 재료의 피로 시험-피로 균열 성장 방법
金属材料疲劳试验疲劳裂纹扩展法
2004-12-24
现行
GB/T 6398-2017
金属材料 疲劳试验 疲劳裂纹扩展方法
Metallic materials—Fatigue testing—Fatigue crack growth method
2017-07-12
现行
ISO 12108-2018
Metallic materials — Fatigue testing — Fatigue crack growth method
金属材料 - 疲劳试验 - 疲劳裂纹扩展法
2018-07-18
现行
ASTM E1457-23e1
Standard Test Method for Measurement of Creep Crack Growth Times in Metals
金属蠕变裂纹扩展时间测量的标准试验方法
2023-11-15
现行
BS 10/30197198 DC
BS ISO 12108. Metallic materials. Fatigue testing. Fatigue crack growth method
BS ISO 12108 金属材料 疲劳测试 疲劳裂纹扩展法
2010-05-25
现行
ASTM E2714-13(2020)
Standard Test Method for Creep-Fatigue Testing
蠕变疲劳试验的标准试验方法
2020-05-01
现行
ASD-STAN prEN 4524
Metallic materials Test methods Measurement of fatigue crack growth rates
金属材料试验方法疲劳裂纹扩展速率的测量
1998-12-31
现行
CB/Z 264-1998
金属材料低周疲劳表面裂纹扩展速率试验方法
Test method for low cycle fatigue surface crack growth rates of metallic materials
1998-03-20
现行
BS EN 3873-2010
Aerospace series. Test methods for metallic materials. Determination of fatigue crack growth rates using corner-cracked (CC) test pieces
航空航天系列 金属材料的试验方法 使用角裂纹(CC)试样测定疲劳裂纹扩展速率
2011-02-28
现行
ASTM D813-07(2019)
Standard Test Method for Rubber Deterioration—Crack Growth
橡胶劣化的标准试验方法&x2014;裂纹扩展
2019-11-01
现行
BS 01/705746 DC
prEN 3873. Aerospace series. Test methods for metallic materials. Determination of fatigue crack growth rates using corner-cracked (CC) test pieces
prEN 3873 航空航天系列 金属材料的试验方法 使用角裂纹(CC)试样测定疲劳裂纹扩展速率
2001-03-21
现行
DIN EN 3873
Aerospace series - Test methods for metallic materials - Determination of fatigue crack growth rates using Corner-Cracked (CC) test pieces; German and English version EN 3873:2010
航空航天系列.金属材料的试验方法.使用角裂纹(CC)试样测定疲劳裂纹扩展速率;德语和英语版本EN 3873:2010
2011-11-01
现行
ASTM F1473-24
Standard Test Method for Notch Tensile Test to Measure the Resistance to Slow Crack Growth of Polyethylene Pipes and Resins
测量聚乙烯管和树脂耐慢速裂纹扩展的缺口拉伸试验的标准试验方法
2024-04-01
现行
ASTM C1465-08(2019)
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Elevated Temperatures
用高温恒定应力速率弯曲试验测定高级陶瓷缓慢裂纹扩展参数的标准试验方法
2019-07-01
现行
ASTM C1368-18
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Rate Strength Testing at Ambient Temperature
ASTM C 1296-2007用环境温度下恒定应力速率强度测试法测定高级陶瓷慢速裂纹生长参数的标准试验方法
2018-01-01
现行
ASTM D6115-97(2019)
Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites
单向纤维增强聚合物基体复合材料模式I疲劳分层生长开始的标准试验方法
2019-03-15