首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA WQTC60649
到馆提醒
收藏跟踪
购买正版
Optimizing the Design of a Medium Pressure UV Reactor Using Computational Fluid Dynamics and Irradiance Modeling 基于计算流体力学和辐照度模型的中压紫外反应器优化设计
发布日期: 2004-11-15
建模 克里斯托弗·舒尔茨,P.E.,迪伊 CDM公司。 科罗拉多州丹佛市 Carrie L.Knatz,P.E.和Veronica Ortiz CDM公司。 加利福尼亚州卡尔斯巴德 约瑟夫·耶尔波 阳光系统公司 新泽西州阿伦代尔 介绍 最近的研究表明,计算流体力学和辐照度建模 (本文中称为CFD-i建模)可用于准确预测通量(或 流动式紫外线反应器中的紫外线剂量。例如,纽约大都会水区 南加州(Mofidi,2004年)比较了预测的CFD-i建模和测量结果 具有四个中压(MP)的3-mgd Calgon Sentinel反应堆的验证测试结果 灯。该模型预测验证结果在MS-2大肠杆菌噬菌体的0.1对数减少范围内。 同样,对18mgd的CFD-i建模和生物剂量学测试结果进行了比较 Wedeco K3000反应器,带低压高输出(LPHO)灯,在各种灯功率下工作 和UVT条件(Rokjer,2002年)。 预测值和测量值之间的百分比差异 以枯草杆菌为靶菌的还原当量剂量(红色),范围为5到20 CFD-i在十种不同流量和水质条件下运行的百分比。由于它的 准确度,CFD-i建模现在通常被紫外线设备供应商用于开发新产品 或者优化现有的紫外线反应器设计。本文介绍了一种新方法的CFD-i建模结果 紫外线反应器设计由新泽西州阿伦代尔的阳光系统公司开发,用于 饮用水消毒应用。研究结果涉及:优化UVBox反应器的设计;并对UVBox反应器和无挡板环形反应器的剂量传递和水力效率进行了比较。CFD-i建模用于优化UVBox反应器的设计,其响应为:剂量输送(红色);停留时间分布;反应器内流体动力流型; 以及整个反应堆的压降。使用CFD-i建模分析了三种紫外线反应器配置:带有30英寸入口/出口法兰的紫外线箱无挡板反应器,矩形容器尺寸 宽30英寸,高30英寸,长30英寸,四个MP灯 垂直于流动; UVBox折流板反应器的容器尺寸和灯具配置与上述相同,以及 位于灯具上游和下游的六个角度导流挡板,用于引导 气流更靠近灯套,并在上游和下游挡板之间引入气流再循环模式;和 环形无挡板反应器,带30英寸入口/出口法兰和30英寸入口/出口法兰的管状容器尺寸和30英寸长×30英寸直径的管状容器尺寸。 包括7个参考文献、表格、图表。
Modeling Christopher R. Schulz, P.E., DEE CDM Inc. Denver, Colorado Carrie L. Knatz, P.E. and Veronica Ortiz CDM Inc. Carlsbad, California Joseph Yelpo Sunlight Systems, Inc Allendale, New Jersey Introduction Recent research has demonstrated that computational fluid dynamics and irradiance modeling (referred to as CFD-i modeling in this paper) can be used to accurately predict the fluence (or UV dose) in flow-through UV reactors. For example, the Metropolitan Water District of Southern California (Mofidi, 2004) compared predicted CFD-i modeling and measured validation testing results for a 3-mgd Calgon Sentinel reactor with four medium-pressure (MP) lamps. The model predicted validation results within 0.1 log reduction of MS-2 coliphage. Similarly, CFD-i modeling and biodosimetry testing results were compared for a 18-mgd Wedeco K3000 reactor with low-pressure high-output (LPHO) lamps under various lamp power and UVT conditions (Rokjer, 2002). The percent difference between predicted and measured reduction equivalent dose (RED) using B. subtilis as the target organism, ranged from 5 to 20 percent for CFD-i runs at ten different flow and water quality conditions. Due to its demonstrated accuracy, CFD-i modeling is now routinely used by UV equipment suppliers for developing new or optimizing existing UV reactor designs. This paper presents CFD-i modeling results for a new UV reactor design being developed by Sunlight Systems, Inc. of Allendale, New Jersey for drinking water disinfection applications. The results were related to: optimization of the UVBox reactor design; and, a comparison of the dose delivery and hydraulic efficiency of the UVBox reactor with an unbaffled annular reactor. CFD-i modeling was used to optimize the design of the UVBox reactor with respoect to: dose delivery (RED); residence time distribution (RTD); hydrodynamic flow patterns in the reactor; and, pressure drop across the reactor. Three UV reactor configurations were analyzed using CFD-i modeling: UVBox unbaffled reactor with 30-inch inlet/outlet flanges, rectangular vessel dimensions of 30 inches wide by 30 inches high by 30 inches long and four MP lamps positioned perpendicular to flow; UVBox baffled reactor with the same vessel dimensions and lamp configuration as above, plus six angled flow deflector baffles positioned upstream and downstream of the lamps to direct the flow closer to the lamp sleeves and introduce flow recirculation patterns between the upstream and downstream baffles; and, annular unbaffled reactor with 30 inch inlet/outlet flanges and tubular vessel dimensions of 30 inch inlet/outlet flanges and tubular vessel dimensions of 30 inches long by 30 inches in diameter. Includes 7 references, tables, figures.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规