1.1
本指南有助于描述实验室信息化景观,并涵盖实验室信息化从开始到退役的生命周期所有阶段中常见的问题。它解释了当今实验室中使用的实验室信息学工具的演变,如实验室信息管理系统(LIMS)、实验室执行系统(LES)、实验室信息系统(LIS)、电子实验室笔记本(ELN)、科学数据管理系统(SDMS)和色谱数据系统(CDS)。它还涵盖了这些工具与给定组织中的外部系统之间的关系(交互)。本指南讨论了支持实验室信息化的工具和生命周期不同阶段常见的各种问题。
下面的小节描述了本文件在特定领域的范围。
1.2
高级目的-
本指南的目的包括:
(1)
对实验室信息化工具的新用户进行教育;
(2)
提供可供不同供应商和最终用户使用的标准术语;
(3)
制定实验室信息化的最低要求;
(4)
为系统的规范、评估、成本论证、实施、项目管理、培训和文件编制提供指导;和
(5)
提供实验室信息化系统的功能需求清单,可在实验室内采用,并与现有系统集成。
1.3
实验室信息化定义-
实验室信息化是旨在优化实验室操作的信息技术的专业应用。它是实验室环境中使用的信息学工具的集合,用于收集、存储、处理、分析、报告和归档实验室及其支持过程中的数据和信息。实验室信息化包括有效使用关键数据管理系统,以电子方式向客户交付结果,以及使用和集成支持系统(例如,培训和政策管理)。主要实验室信息化工具的示例包括实验室信息管理系统(LIMS)、实验室执行系统(LES)、实验室信息系统(LIS)、电子实验室笔记本(ELN)、科学数据管理系统(SDMS)和色谱数据系统(CDS)。
1.4
选择和实施实验室信息化解决方案时的范围考虑-
许多实验室已确定,他们需要部署多个实验室信息化系统,以自动化其实验室流程并管理其数据。信息学解决方案的选择需要对实验室的要求进行详细分析,而不应是简单的产品类别决策。了解实验室需求的信息技术(IT)代表和主题专家(SME)需要参与实验室信息化系统的选择和实施,以确保满足实验室的需求,并为其提供支持。实验室信息的客户(内部和外部)也应包括在实验室信息化解决方案设计中,以确保系统之间的完全电子集成。
1.5
本指南的范围涵盖各种实验室类型、行业和规模。实验室类型和行业示例包括:
1.5.1
普通实验室:
1.5.1.1
标准(ASTM、IEEE、ISO)和
1.5.1.2
政府(EPA、FDA、JPL、NASA、NRC、USDA、USGS、FERC)。
1.5.2
环境的:
1.5.2.1
环境监测。
1.5.3
生命科学实验室:
1.5.3.1
生物技术和
1.5.3.2
诊断的。
1.5.4
医疗保健:
1.5.4.1
生物学/基因组学,
1.5.4.2
医疗器械、,
1.5.4.3
制药的
1.5.4.4
兽医
1.5.4.5
公共卫生,以及
1.5.4.6
医院
1.5.5
重工业实验室:
1.5.5.1
能源和资源,
1.5.5.2
制造和施工,
1.5.5.3
材料和化学品,以及
1.5.5.4
运输和装运。
1.5.6
食品和饮料实验室:
1.5.6.1
农业
1.5.6.2
饮料,
1.5.6.3
食物,以及
1.5.6.4
餐饮服务和招待。
1.5.7
公共部门实验室:
1.5.7.1
执法/法医,
1.5.7.2
州和地方政府,
1.5.7.3
教育和非营利组织,以及
1.5.7.4
公用事业(水、电、废物处理)。
1.6
集成-
本指南涵盖的集成范围包括不同实验室信息化工具和其他外部系统(文件管理、色谱数据系统、实验室仪器、光谱数据系统、企业资源规划(ERP)、制造执行系统(MES)之间的通信和有意义的数据交换,调查/偏差和CAPA管理系统)和其他集成业务系统(例如,临床或医院环境)为任何实验室提供了显著的业务效益,本指南对此进行了高层次的讨论。
1.7
生命周期阶段-
本指南的范围旨在了解实验室信息化工具从项目启动点到退役和退役的生命周期。本指南旨在帮助新受众了解不同实验室信息化工具之间关系的复杂性,以及如何规划和管理实施项目,而经验丰富的用户可以使用不同的生命周期来维护现有的实验室信息化工具。在当今不断发展的实验室环境中,将其他信息学工具集成到现有工具中,增加了需要考虑的约束。生命周期讨论包括实验室信息化解决方案生命周期和项目生命周期。
1.7.1
产品生命周期包括一个特定的实验室信息系统以及该系统在需要更换或升级之前的预期使用寿命。
1.7.2
项目生命周期包括获取、实施、运营并最终淘汰特定实验室信息系统的活动。
1.8
观众-
本指南是根据以下利益相关者的需要制定的:
(1)
实验室信息化工具的最终用户,
(2)
实验室信息化工具的实施者,
(3)
质量人员,
(4)
信息技术人员,
(5)
实验室信息化工具供应商,
(6)
仪器供应商,
(7)
批准实验室信息化工具资金的个人,
(8)
实验室信息化应用支持专家,以及
(9)
软件测试/验证专家。本指南中包含的信息将使在实验室工作或与实验室互动的广大读者受益。新用户可以使用本指南了解各种实验室信息化工具的目的和功能,以及这些工具与外部系统之间的交互。该指南还可以帮助潜在用户理解这些不同实验室信息学工具的术语、配置、功能、设计、优点和成本。购买特定工具的个人也可以使用本指南来确定推荐用于特定实验室环境的功能。
不同商业实验室信息系统供应商的研发人员可以使用本指南作为工具来评估、识别并潜在地提高其产品的能力。供应商的销售人员可以使用本指南以更通用和产品中性的术语向潜在客户介绍其实验室信息化产品的功能。
1.9
超出范围-
本指南并不试图定义实验室信息化的边界,因为它们在不同类型的工具之间不断演变和模糊;相反,它侧重于实验室信息学作为一个整体提供的功能。
1.10
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
4.1
相关性-
本指南旨在就实验室信息学的许多方面对目标受众进行教育。具体而言,指南可以:
4.1.1
帮助培养实验室信息化的新用户;
4.1.2
帮助教育实验室和其他使用实验室信息学的组织的普通受众;
4.1.3
帮助教育仪器制造商和其他常用接口系统的生产商;
4.1.4
提供实验室信息化供应商和最终用户可以使用的标准术语;
4.1.5
为主要实验室信息化功能制定一套最低要求;
4.1.6
就实验室信息化的规范、评估、成本论证、实施、项目管理、培训和文件编制中执行的任务和创建的文件提供指导;
和
4.1.7
为实验室信息化和其他软件工具的集成提供高级指导。
4.2
如何使用-
本指南旨在供参与实验室信息化实施、使用或维护任何方面的所有利益相关者使用。
4.2.1
它旨在由负责实验室信息化实施和使用的个人或团体在整个实验室信息化生命周期内使用,包括规范、构建/配置、验证、使用、升级和退役/退役。
4.2.2
本指南还提供了实验室信息化功能需求清单示例,可用于指导实验室信息化系统的购买、升级或开发。
1.1
This guide helps describe the laboratory informatics landscape and covers issues commonly encountered at all stages in the life cycle of laboratory informatics from inception to retirement. It explains the evolution of laboratory informatics tools used in today’s laboratories such as laboratory information management systems (LIMS), laboratory execution systems (LES), laboratory information systems (LIS), electronic laboratory notebooks (ELN), scientific data management systems (SDMS), and chromatography data systems (CDS). It also covers the relationship (interactions) between these tools and the external systems in a given organization. The guide discusses supporting laboratory informatics tools and a wide variety of the issues commonly encountered at different stages in the life cycle. The subsections that follow describe the scope of this document in specific areas.
1.2
High-Level Purpose—
The purpose of this guide includes:
(1)
educating new users on laboratory informatics tools;
(2)
providing a standard terminology that can be used by different vendors and end users;
(3)
establishing minimum requirements for laboratory informatics;
(4)
providing guidance for the specification, evaluation, cost justification, implementation, project management, training, and documentation of the systems; and
(5)
providing a functional requirements checklist for laboratory informatics systems that can be adopted within the laboratory and integrated with existing systems.
1.3
Laboratory Informatics Definition—
Laboratory informatics is the specialized application of information technology aimed at optimizing laboratory operations. It is a collection of informatics tools utilized within laboratory environments to collect, store, process, analyze, report, and archive data and information from the laboratory and its supporting processes. Laboratory informatics includes the effective use of critical data management systems, the electronic delivery of results to customers, and the use and integration of supporting systems (for example, training and policy management). Examples of primary laboratory informatics tools include laboratory information management systems (LIMS), laboratory execution systems (LES), laboratory information systems (LIS), electronic laboratory notebooks (ELN), scientific data management systems (SDMS), and chromatography data systems (CDS).
1.4
Scope Considerations when Selecting and Implementing Laboratory Informatics Solutions—
Many laboratories have determined that they need to deploy multiple laboratory informatics systems to automate their laboratory processes and manage their data. Selection of an informatics solution requires a detailed analysis of the laboratory’s requirements and should not be a simple product category decision. Information technology (IT) representatives and subject matter experts (SMEs) who understand the needs of the laboratory need to be involved in the selection and implementation of a laboratory informatics system to ensure that the needs of the laboratory are met and IT can support it. Customers (internal and external) of laboratory information should also be included in the laboratory informatics solution design to ensure full electronic integration between systems.
1.5
The scope of this guide covers a wide range of laboratory types, industries, and sizes. Examples of laboratory types and industries include:
1.5.1
General Laboratories:
1.5.1.1
Standards (ASTM, IEEE, ISO) and
1.5.1.2
Government (EPA, FDA, JPL, NASA, NRC, USDA, USGS, FERC).
1.5.2
Environmental:
1.5.2.1
Environmental monitoring.
1.5.3
Life Science Laboratories:
1.5.3.1
Biotechnology and
1.5.3.2
Diagnostic.
1.5.4
Healthcare and Medical:
1.5.4.1
Bionomics/genomics,
1.5.4.2
Medical devices,
1.5.4.3
Pharmaceutical,
1.5.4.4
Veterinary,
1.5.4.5
Public health, and
1.5.4.6
Hospital.
1.5.5
Heavy Industry Laboratories:
1.5.5.1
Energy and resources,
1.5.5.2
Manufacturing and construction,
1.5.5.3
Materials and chemicals, and
1.5.5.4
Transportation and shipping.
1.5.6
Food and Beverage Laboratories:
1.5.6.1
Agriculture,
1.5.6.2
Beverages,
1.5.6.3
Food, and
1.5.6.4
Food service and hospitality.
1.5.7
Public Sector Laboratories:
1.5.7.1
Law enforcement/forensic,
1.5.7.2
State and local government,
1.5.7.3
Education and nonprofits, and
1.5.7.4
Public utilities (water, electric, waste treatment).
1.6
Integration—
The scope of integration covered in this guide includes communication and meaningful data exchange between different laboratory informatics tools and other external systems (document management, chromatography data systems, laboratory instruments, spectroscopy data systems, enterprise resource planning (ERP), manufacturing execution systems (MES), investigations/deviations and CAPA management systems), and other integrated business systems (for example, clinical or hospital environments) provide significant business benefits to any laboratory and is discussed at a high level in this guide.
1.7
Life-Cycle Phases—
The scope of this guide is intended to provide an understanding of laboratory informatics tools’ life cycle from project initiation point to retirement and decommissioning. This guide was designed to help newer audiences in understanding the complexity in the relationships between different laboratory informatics tools and how to plan and manage the implementation project, while seasoned users may use the different life cycles to maintain existing laboratory informatics tools. Integrating additional informatics tools to existing ones in today’s evolving laboratory environment adds constraints that need to be considered. The life-cycle discussion includes both the laboratory informatics solution life cycle as well as the project life cycle.
1.7.1
The product life cycle encompasses a specific laboratory informatics system and the expected useful life of that system before it needs to be replaced or upgraded.
1.7.2
The project life cycle encompasses the activities to acquire, implement, operate, and eventually retire a specific laboratory informatics system.
1.8
Audience—
This guide has been created with the needs of the following stakeholders in mind:
(1)
end users of laboratory informatics tools,
(2)
implementers of laboratory informatics tools,
(3)
quality personnel,
(4)
information technology personnel,
(5)
laboratory informatics tools vendors,
(6)
instrument vendors,
(7)
individuals who approve laboratory informatics tools funding,
(8)
laboratory informatics applications support specialists, and
(9)
software test/validation specialists. Information contained in this guide will benefit a broad audience of people who work in or interact with a laboratory. New users can use this guide to understand the purpose and functions of the wide variety of laboratory informatics tools as well as the interactions between these tools with external systems. The guide can also help prospective users in understanding terminology, configurations, features, design, benefits, and costs of these different laboratory informatics tools. Individuals who are purchasing specific tools may also use this guide to identify functions that are recommended for specific laboratory environments. Research and development staff of different commercial laboratory informatics systems vendors may use the guide as a tool to evaluate, identify, and potentially improve the capabilities of their products. The vendors’ sales staff may use the guide to represent functions of their laboratory informatics products to prospective customers in more generic and product-neutral terms.
1.9
Out of Scope—
This guide does not attempt to define the boundaries of laboratory informatics, as they continue to evolve and blur between the different types of tools; rather, it focuses on the functionality that is provided by laboratory informatics as a whole.
1.10
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
Relevance—
This guide is intended to educate the intended audience on many aspects of laboratory informatics. Specifically, the guide may:
4.1.1
Help educate new users of laboratory informatics;
4.1.2
Help educate general audiences in laboratories and other organizations that use laboratory informatics;
4.1.3
Help educate instrument manufactures and producers of other commonly interfaced systems;
4.1.4
Provide standard terminology that can be used by laboratory informatics vendors and end users;
4.1.5
Establish a minimum set of requirements for primary laboratory informatics functions;
4.1.6
Provide guidance on the tasks performed and documentation created in the specification, evaluation, cost justification, implementation, project management, training, and documentation of laboratory informatics; and
4.1.7
Provide high-level guidance for the integration of laboratory informatics and other software tools.
4.2
How to be Used—
This guide is intended to be used by all stakeholders involved in any aspect of laboratory informatics implementation, use, or maintenance.
4.2.1
It is intended to be used throughout the laboratory informatics life cycle by individuals or groups responsible for laboratory informatics implementation and use, including specification, build/configuration, validation, use, upgrades, and retirement/decommissioning.
4.2.2
This guide also provides an example of a laboratory informatics functional requirements checklist that can be used to guide the purchase, upgrade, or development of a laboratory informatics system.