1.1
沉积物污染的相关性-
沉积物为许多水生生物提供栖息地,是许多引入地表水的持久性化学品的主要储存库。在水生环境中,有机和无机化学品都可能积聚在沉积物中,而沉积物又可能成为生活在沉积物上或沉积物中的生物体的暴露源。受污染的沉积物可能对水生生物有直接毒性,或者是食物链中生物累积的污染物来源。
1.2
沉积物评估工具-
几种类型的信息可能有助于评估沉积物污染物构成的风险或潜在风险,包括:(
1.
)沉积物污染物的化学分析;(
2.
)沉积物毒性试验(
3.
)生物累积试验;和(
4.
)底栖生物群落结构调查。其中每一项都为评估提供了不同类型的信息,综合所有四条证据线的信息通常可以提供最可靠的评估。
1.3
受污染沉积物毒性试验的强度-
直接评估受污染沉积物的毒性为沉积物评估提供了一些相同的优势,就像整个废水毒性测试为工业和市政废水管理提供的优势一样。对于废水测试,沉积物毒性的直接测试允许评估生物效应,即使:(
1.
)存在的有毒化学品的身份尚不(或不完全)清楚;(
2.
)沉积物的特定场地特征对毒性(生物利用度)的影响尚不清楚;和(
3.
)目前尚不清楚或无法充分预测化学品混合物的交互或聚合效应。此外,测试通过沉积物暴露的底栖或表层生物的反应提供了一种评估,该评估基于自然界中存在的相同暴露途径,而不仅仅是通过水柱暴露。
1.4
将沉积物暴露与毒性联系起来-
沉积物评估面临的挑战之一是,沉积物污染物的毒性可能因沉积物特性的不同而有很大差异;散装沉积物浓度(标准化为干重)可能足以在一种沉积物中产生毒性,而在另一种沉积物中相同浓度不会产生毒性(例如,Adams等人,1985年)
(
1.
)
.
2.
沉积物中有机碳的数量和特征等因素可能会改变许多化学品的生物利用度(Di Toro等人)。
1991
(
2.
)
; Ghosh 2007年
(
3.
)
),以及其他特征,如酸挥发性硫化物或铁锰氧化物(Di Toro等人,1990年)
(
4.
)
,Tessier等人,1996年
(
5.
)
). 直接测量受污染沉积物中的毒性可以提供一种方法来测量这些因素对沉积物毒物生物利用度的总体影响。
1.5
了解沉积物毒性的原因-
虽然直接测试沉积物毒性的优点是能够检测任何有毒化学品的影响,但其缺点是无法提供任何特定指示,说明哪些化学品或哪些化学品导致了观察到的反应。
其他技术,如加标沉积物毒性试验或沉积物毒性识别评估(TIE)方法已经开发出来,可以帮助评估因果关系(美国环保局2007年)
(
6.
)
.
1.6
沉积物毒性试验的使用-
对从现场收集的沉积物进行的毒性测试可用于:(
1.
)进行沉积物毒性测量的沉积物质量调查;(
2.
)优先考虑沉积物区域,以便更详细地调查沉积物污染;
(
3.
)确定沉积物毒性的空间范围;(
4.
)比较不同生物对沉积物污染的敏感性;(
5.
)评估沉积物污染程度与沿污染梯度的生物效应之间的关系;(
6.
)评估沉积物在其他位置(例如疏浚物处理)的清除和放置的适用性;(
7.
)帮助制定补救措施的目标;和(
8.
)评估补救措施在降低沉积物毒性方面的有效性。
这些应用通常旨在评估采样时现场层状沉积物的可能生物效应。然而,掺有已知数量化学品的天然或人工沉积物的毒性测试也可用于评估其他问题,例如:(
1.
)确定化学品对通过沉积物暴露的生物体的效力;(
2.
)评估沉积物成分对化学生物利用度或毒性的影响;
(
3.
)通知可能在释放后积聚并持续存在于沉积物中的化学品的特定化学品风险评估;(
4.
)制定水或沉积物中化学品的监管指南。加标沉积物研究的优点是允许进行单变量实验,在该实验中可以可靠地构建暴露梯度;因此,它们有助于推导效应的标准化点估计值,例如半致死浓度(LC50)或将亚致死性能降低指定量的浓度,例如效应浓度(例如,估计将试验生物体的重量降低20%的EC20) %).
1.7
限制-
虽然本标准中包含了一些安全注意事项,但包含进行沉积物毒性试验所需的所有安全要求超出了本标准的范围。
1.8
本标准安排如下:
部分
范围
1.
参考文件
2.
术语
3.
试验方法总结
4.
意义和用途
5.
干扰
6.
水、配方沉积物、试剂
7.
健康、安全、废物管理、生物安保
8.
设施、设备和用品
9
样品收集、储存、表征和加标
10
质量保证和质量控制
11
收集、培养和维护端足类动物
azteca海莱拉
还有蚊子
稀释摇蚊
12
结果和报告的解释
13
精度和偏差
14
关键词
15
附件
使用端足类动物进行10-d沉积物或水毒性试验的指南
azteca海莱拉
附件A1
使用端足类动物进行42-d沉积物或水生殖毒性试验的指南
azteca海莱拉
附件A2
用蠓进行10-d沉积物或水毒性试验的指南
稀释摇蚊
附件A3
用蠓进行沉积物或水生命周期毒性试验的指南
稀释摇蚊
附件A4
幼年淡水贻贝沉积物毒性试验指南
附件A5
用蠓进行沉积物毒性试验的指南
里帕里氏摇蚊
附录A6
蜉蝣沉积物毒性试验指南(
六边形
spp)。
附件A7
寡毛类沉积物毒性试验指南
Tubifex Tubifex
附录A8
工具书类
1.9
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
第节给出了具体的危险说明
8.
.
1.10
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
5.1
沉积物为许多水生生物提供栖息地,是许多引入地表水的持久性化学品的主要储存库。在水生环境中,大多数人为化学品和废料(包括有毒的有机和无机化学品)都可能积聚在沉积物中,而沉积物又可能成为生活在沉积物上或沉积物中的生物体的暴露源。受污染的沉积物可能对水生生物有直接毒性,或者是食物链中生物累积的污染物来源。
5.2
沉积物测试的目的是确定沉积物中的化学物质是否对底栖生物有害或被底栖生物累积。这些试验可用于测量沉积物中复杂化学混合物的交互毒性效应。此外,进行测试不需要了解沉积物和测试生物体之间相互作用的特定途径。沉积物测试可用于:(
1.
)确定毒性效应和生物利用度之间的关系(
2.
)调查化学品之间的相互作用(
3.
)比较不同生物体的敏感性(
4.
)确定污染的空间和时间分布(
5.
)评估疏浚物的危害(
6.
)作为产品许可或安全测试的一部分,测量毒性(
7.
)对清理区域进行排序,以及(
8.
)评估补救或管理实践的有效性。
5.3
在不同浓度的化学品中添加的沉积物毒性试验结果可用于建立化学品和生物反应之间的因果关系。
将试验材料以不同浓度掺入沉积物中的毒性试验结果可按LC50(半致死浓度)、EC50(中效应浓度)、IC50(抑制浓度)或NOEC(未观察到的效应浓度)或LOEC(最低观察到的效应浓度)报告。然而,加标沉积物可能不代表与现场沉积物相关的化学品。混合时间、老化和材料的化学形式可能会影响加标沉积物试验中试验生物体的反应(
10.6
).
5.4
评估沉积物中化学品的影响浓度需要了解控制其生物利用度的因素。以化学品质量单位表示的化学品的类似浓度/沉积物干重通常在不同沉积物中表现出一定的毒性范围(Di Toro等人,1990年)
(
4.
)
, 1991
(
2.
)
). 沉积物中化学物质的效应浓度与间隙水浓度相关,间隙水中的效应浓度通常与水中的效应浓度相似-
仅限风险敞口。沉积物中非离子有机化合物和金属的生物利用度通常与有机碳浓度呈负相关;此外,沉积物中金属的生物利用度通常与酸挥发性硫化物呈负相关。无论暴露途径如何,这些效应浓度与间隙水浓度的相关性表明,间隙水中的预测或测量浓度可用于量化生物体的暴露浓度。
因此,关于沉积物固相和液相之间化学物质分配的信息有助于确定有效浓度(DiToro等人,1990年)
(
4.
)
, 1991
(
2.
)
; 温等.2005
(
19
)
).
5.5
现场调查可以设计为对沉积物污染分布进行定性调查,或对现场之间的污染进行定量统计比较。沉积物毒性调查通常是对生物、化学、地质和水文数据进行更全面分析的一部分(美国环保局2002a、b和c)
(
20-
22
)
. 如果同时为沉积物测试、化学分析和底栖生物群落结构采集子样本,则可以改善统计相关性,降低采样成本。
5.6
表1
列出了用于评估沉积物质量的几种方法。这些方法包括:(
1.
)平衡分配沉积物指南(ESGs;美国环保局2003)
(
23
)
, 2005
(
24
)
; Nowell等人,2016年
(
25
)
), (
2.
)经验沉积物质量指南(例如,可能影响浓度、PEC;
MacDonald等人,2000年
(
26
)
,Ingersoll等人,2001年
(
27
)
), (
3.
)组织残留物(
4.
)间质水毒性(
5.
)现场收集的沉积物试验和沉积物尖峰试验的全沉积物毒性(
6.
)底栖生物群落结构,以及(
7.
)沉积物质量三元组整合了来自沉积物化学、沉积物毒性和底栖生物群落结构的数据(Burton 1991)
(
28
)
,查普曼等人,1997年
(
29
)
,美国环保局2002a,b和c
(
20-
22
)
). 中列出的沉积物评估方法
表1
可以分为数字(例如ESG)、描述性(例如整个沉积物毒性试验)或数字和描述性方法的组合(例如PEC)。数值方法可用于推导基于化学特定效应的沉积物质量指南(SQG)。虽然每种方法都可以用于做出特定于现场的决策,但没有一种方法可以充分解决沉积物质量问题。总的来说,综合使用证据权重的几种方法是评估沉积物相关污染物影响的最理想方法(美国环保局2002a、b和c)
(
20-
22
)
,温等.2005
(
19
)
指导
E1525
指导
E3163
). 结合实验室暴露、化学分析和底栖生物群落评估(沉积物质量三元组)的数据进行的危害评估为水生生物群落中污染引起的退化程度提供了强有力的补充证据(伯顿1991)
(
28
)
,查普曼等人,1997年
(
29
)
). 重要的是,决策所需证据的权重(使用的方法数量)应根据决策的权重(成本)确定。
1.1
Relevance of Sediment Contamination—
Sediment provides habitat for many aquatic organisms and is a major repository for many of the more persistent chemicals that are introduced into surface waters. In the aquatic environment, both organic and inorganic chemicals may accumulate in sediment, which can in turn serve as a source of exposure for organisms living on or in sediment. Contaminated sediments may be directly toxic to aquatic life or can be a source of contaminants for bioaccumulation in the food chain.
1.2
Sediment Assessment Tools—
Several types of information may be useful in assessing the risk, or potential risk, posed by sediment contaminants, including: (
1
) chemical analysis of sediment contaminants; (
2
) sediment toxicity tests, (
3
) bioaccumulation tests; and (
4
) surveys of benthic community structure. Each of these provides a different type of information to the assessment, and integrating information from all four lines of evidence may often provide the most robust assessments.
1.3
Strengths of Toxicity Testing of Contaminated Sediments—
Directly assessing the toxicity of contaminated sediments provides some of the same advantages to sediment assessment that whole effluent toxicity testing provides to management of industrial and municipal effluents. As for effluent tests, direct testing of sediment toxicity allows the assessment of biological effects even if: (
1
) the identities of toxic chemicals present are not (or not completely) known; (
2
) the influence of site-specific characteristics of sediments on toxicity (bioavailability) is not understood; and (
3
) the interactive or aggregate effects of mixtures of chemicals present are not known or cannot be adequately predicted. In addition, testing the response of benthic or epibenthic organisms exposed via sediment provides an assessment that is based on the same routes of exposure that would exist in nature, rather than only through water column exposure.
1.4
Relating Sediment Exposure to Toxicity—
One of the challenges with sediment assessment is that the toxicity of sediment contaminants can vary greatly with differences in sediment characteristics; a bulk sediment concentration (normalized to dry weight) may be sufficient to cause toxicity in one sediment, while the same concentration in another sediment does not cause toxicity (for example, Adams et al. 1985)
(
1
)
.
2
Factors such as the amount and characteristics of the organic carbon present in sediment can alter the bioavailability of many chemicals (Di Toro et al. 1991
(
2
)
; Ghosh 2007
(
3
)
), as can other characteristics such as acid volatile sulfide or iron and manganese oxides (Di Toro et al. 1990
(
4
)
, Tessier et al. 1996
(
5
)
). Direct measurement of toxicity in contaminated sediments can provide a means to measure the aggregate effects of such factors on the bioavailability of sediment toxicants.
1.5
Understanding the Causes of Sediment Toxicity—
While direct testing of sediment toxicity has the advantage of being able to detect the effects of any toxic chemical present, it has the disadvantage of not providing any specific indication of what chemical or chemicals are causing the observed responses. Other techniques, such as spiked-sediment toxicity tests or Toxicity Identification Evaluation (TIE) methods for sediments have been developed and are available to help evaluate cause/effect relationships (USEPA 2007)
(
6
)
.
1.6
Uses of Sediment Toxicity Tests—
Toxicity tests conducted on sediments collected from field locations can be used to: (
1
) conduct surveys of sediment quality as measured by sediment toxicity; (
2
) prioritize areas of sediment for more detailed investigation of sediment contamination; (
3
) determine the spatial extent of sediment toxicity; (
4
) compare the sensitivity of different organisms to sediment contamination; (
5
) evaluate the relationship between the degree of sediment contamination and biological effects along a contamination gradient; (
6
) evaluate the suitability of sediments for removal and placement at other location (for example, dredged material disposal); (
7
) help establish goals for remedial actions; and (
8
) assess the effectiveness of remedial actions at reducing sediment toxicity. These applications are generally targeted at assessing the likely biological effects of bedded sediments at field sites at the time of sampling. However, toxicity testing of natural or artificial sediments spiked with known quantities of chemicals can also be used to evaluate additional questions such as: (
1
) determining the potency of a chemical to organisms exposed via sediment; (
2
) evaluating the effect of sediment composition on chemical bioavailability or toxicity; (
3
) informing chemical-specific risk assessments for chemicals that may accumulate and persist in sediments upon release; (
4
) establishing regulatory guidance for chemicals in water or sediment. Spiked sediment studies have the advantage of allowing uni-variate experiments in which exposure gradients can be reliably constructed; as such they lend themselves to the derivation of standardized point estimates of effect, such as a median lethal concentration (LC50) or concentration reducing sublethal performance by a specified amount, such as an effect concentration (for example, EC20 estimated to reduce weight of test organisms by 20 %).
1.7
Limitations—
While some safety considerations are included in this standard, it is beyond the scope of this standard to encompass all safety requirements necessary to conduct sediment toxicity tests.
1.8
This standard is arranged as follows:
Section
Scope
1
Referenced Documents
2
Terminology
3
Summary of Test Methods
4
Significance and Use
5
Interferences
6
Water, Formulated Sediments, Reagents
7
Health, Safety, Waste Management, Biosecurity
8
Facilities, Equipment, and Supplies
9
Sample Collection, Storage, Characterization, and Spiking
10
Quality Assurance and Quality Control
11
Collection, Culturing, and Maintaining the Amphipod
Hyalella azteca
and the Midge
Chironomus dilutus
12
Interpretation of Results and and Reporting
13
Precision and Bias
14
Keywords
15
Annexes
Guidance for 10-d Sediment or Water Toxicity Tests with the Amphipod
Hyalella azteca
Annex A1
Guidance for 42-d Sediment or Water Reproductive Toxicity Tests with the Amphipod
Hyalella azteca
Annex A2
Guidance for 10-d Sediment or Water Toxicity Tests with the Midge
Chironomus dilutus
Annex A3
Guidance for Sediment or Water Life Cycle Toxicity Tests with the Midge
Chironomus dilutus
Annex A4
Guidance for Sediment Toxicity Tests with Juvenile Freshwater Mussels
Annex A5
Guidance for Sediment Toxicity Tests with the Midge
Chironomus riparius
Annex A6
Guidance for Sediment Toxicity Tests with Mayflies (
Hexagenia
spp).
Annex A7
Guidance for Sediment Toxicity Tests with the Oligochaete
Tubifex tubifex
Annex A8
References
1.9
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
Specific hazard statements are given in Section
8
.
1.10
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
Sediment provides habitat for many aquatic organisms and is a major repository for many of the more persistent chemicals that are introduced into surface waters. In the aquatic environment, most anthropogenic chemicals and waste materials including toxic organic and inorganic chemicals can accumulate in sediment, which can in turn serve as a source of exposure for organisms living on or in sediment. Contaminated sediments may be directly toxic to aquatic life or can be a source of contaminants for bioaccumulation in the food chain.
5.2
The objective of a sediment test is to determine whether chemicals in sediment are harmful to or are bioaccumulated by benthic organisms. The tests can be used to measure interactive toxic effects of complex chemical mixtures in sediment. Furthermore, knowledge of specific pathways of interactions among sediments and test organisms is not necessary to conduct the tests. Sediment tests can be used to: (
1
) determine the relationship between toxic effects and bioavailability, (
2
) investigate interactions among chemicals, (
3
) compare the sensitivities of different organisms, (
4
) determine spatial and temporal distribution of contamination, (
5
) evaluate hazards of dredged material, (
6
) measure toxicity as part of product licensing or safety testing, (
7
) rank areas for clean up, and (
8
) estimate the effectiveness of remediation or management practices.
5.3
Results of toxicity tests on sediments spiked at different concentrations of chemicals can be used to establish cause and effect relationships between chemicals and biological responses. Results of toxicity tests with test materials spiked into sediments at different concentrations may be reported in terms of a LC50 (median lethal concentration), an EC50 (median effect concentration), an IC50 (inhibition concentration), or as a NOEC (no observed effect concentration) or LOEC (lowest observed effect concentration). However, spiked sediment may not be representative of chemicals associated with sediment in the field. Mixing time, aging and the chemical form of the material can affect responses of test organisms in spiked sediment tests (
10.6
).
5.4
Evaluating effect concentrations for chemicals in sediment requires knowledge of factors controlling their bioavailability. Similar concentrations of a chemical in units of mass of chemical per mass of sediment dry weight often exhibit a range in toxicity in different sediments (Di Toro et al. 1990
(
4
)
, 1991
(
2
)
). Effect concentrations of chemicals in sediment have been correlated to interstitial water concentrations, and effect concentrations in interstitial water are often similar to effect concentrations in water-only exposures. The bioavailability of nonionic organic compounds and metals in sediment is often inversely correlated with the organic carbon concentration; moreover, the bioavailability of metals in sediment are often inversely correlated with acid volatile sulfide. Whatever the route of exposure, these correlations of effect concentrations to interstitial water concentrations indicate that predicted or measured concentrations in interstitial water can be used to quantify the exposure concentration to an organism. Therefore, information on partitioning of chemicals between solid and liquid phases of sediment is useful for establishing effect concentrations (DiToro et al. 1990
(
4
)
, 1991
(
2
)
; Wenning et al. 2005
(
19
)
).
5.5
Field surveys can be designed to provide either a qualitative reconnaissance of the distribution of sediment contamination or a quantitative statistical comparison of contamination among sites. Surveys of sediment toxicity are usually part of more comprehensive analyses of biological, chemical, geological, and hydrographic data (USEPA 2002a, b, and c)
(
20-
22
)
. Statistical correlations may be improved and sampling costs may be reduced if subsamples are taken simultaneously for sediment tests, chemical analyses, and benthic community structure.
5.6
Table 1
lists several approaches used to assess of sediment quality. These approaches include: (
1
) equilibrium partitioning sediment guidelines (ESGs; USEPA 2003
(
23
)
, 2005
(
24
)
; Nowell et al. 2016
(
25
)
), (
2
) empirical sediment quality guidelines (for example, probable effect concentrations, PECs; MacDonald et al. 2000
(
26
)
, Ingersoll et al. 2001
(
27
)
), (
3
) tissue residues, (
4
) interstitial water toxicity, (
5
) whole-sediment toxicity with field-collected sediment tests and with sediment-spiking tests, (
6
) benthic community structure, and (
7
) sediment quality triad integrating data from sediment chemistry, sediment toxicity and benthic community structure (Burton 1991
(
28
)
, Chapman et al. 1997
(
29
)
, USEPA 2002a, b, and c
(
20-
22
)
). The sediment assessment approaches listed in
Table 1
can be classified as numeric (for example, ESGs), descriptive (for example, whole-sediment toxicity tests), or a combination of numeric and descriptive approaches (for example, PECs). Numeric methods can be used to derive chemical-specific effects-based sediment quality guidelines (SQGs). Although each approach can be used to make site-specific decisions, no one single approach can adequately address sediment quality. Overall, an integration of several methods using the weight of evidence is the most desirable approach for assessing the effects of contaminants associated with sediment (USEPA 2002a, b, and c
(
20-
22
)
, Wenning et al. 2005
(
19
)
, Guide
E1525
, Guide
E3163
). Hazard evaluations integrating data from laboratory exposures, chemical analyses, and benthic community assessments (the sediment quality triad) provide strong complementary evidence of the degree of pollution-induced degradation in aquatic communities (Burton 1991
(
28
)
, Chapman et al. 1997
(
29
)
). Importantly, the weight of the evidence needed to make a decision (number of methods used) should be determined based on the weight (cost) of the decision.