1.1
This test method covers the measurement of tensile properties of geotextiles using a wide-width specimen tensile method. This test method is applicable to most geotextiles that include woven geotextiles, nonwoven geotextiles, layered fabrics, and knit fabrics that are used for geotextile applications.
1.2
This test method covers the measurement of tensile strength and elongation of geotextiles and includes directions for the calculation of initial modulus, offset modulus, secant modulus, and breaking toughness.
1.3
Procedures for measuring the tensile properties of both conditioned and wet geotextiles by the wide-width method are included.
1.4
The basic distinction between this test method and other methods for measuring strip tensile properties is the width of the specimen. Some fabrics used in geotextile applications have a tendency to contract (neck down) under a force in the gage length area. The greater width of the specimen specified in this test method minimizes the contraction effect of those fabrics and provides a closer relationship to expected geotextile behavior in the field and a standard comparison.
1.5
The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.6
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
The determination of the wide-width force-elongation properties of geotextiles provides design parameters for reinforcement type applications, for example, design of reinforced roadways/pavements, reinforced embankments over soft subgrades, reinforced soil retaining walls, and reinforcement of slopes. When strength is not necessarily a design consideration, an alternative test method may be used for acceptance testing. Test Method
D4595/D4595M
for the determination of the wide-width tensile properties of geotextiles may be used for the acceptance testing of commercial shipments of geotextiles, but caution is advised since information about between-laboratory precision is incomplete (
Note 3
). Comparative tests as directed in
5.1.1
may be advisable.
5.1.1
In cases of a dispute arising from differences in reported test results when using Test Method
D4595/D4595M
for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. At a minimum, the two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student's
t
-test for unpaired data and an acceptable probability level chosen by the two parties before the testing began. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results in light of the known bias.
5.2
Most geotextiles can be tested by this test method. Some modification of clamping techniques may be necessary for a given geotextile depending upon its structure. Special clamping adaptions may be necessary with strong geotextiles or geotextiles made from glass fibers to prevent them from slipping in the clamps or being damaged as a result of being gripped in the clamps. Specimen clamping may be modified as required at the discretion of the individual laboratory, provided a representative tensile strength is obtained. In any event, the procedure described in Section
10
of this test method for obtaining wide-width strip tensile strength must be maintained.
5.3
This test method is applicable for testing geotextiles either dry or wet. It is used with a constant-rate-of-extension type tension apparatus.
5.4
The use of tensile strength test methods that restrict the
clamped
width dimension to 50 mm [2 in.] or less, such as the ravel, cut strip, and grab test procedures, have been found less suitable than this test method for determining design strength parameters for some geotextiles. This is particularly the case for nonwoven geotextiles. The wide-width strip technique has been explored by the industry and is recommended in these cases for geotextile applications.
5.4.1
This test method may not be suited for some woven fabrics used in geotextile applications that exhibit strengths approximately 100 kN/m or 600 lbf/in. due to clamping and equipment limitations. In those cases, 100 mm [4 in.] width specimens may be substituted for 200 mm [8 in.] width specimens. On those fabrics, the contraction effect cited in
1.4
is minimal and, consequently, the standard comparison can continue to be made.