1.1
These test methods cover the determination of the electrical conductivity of aviation and distillate fuels with and without a static dissipator additive. The test methods normally give a measurement of the conductivity when the fuel is uncharged, that is, electrically at rest (known as the rest conductivity).
1.2
Two test methods are available for field tests of fuel conductivity. These are: (
1
) portable meters for the direct measurement in tanks or the field or laboratory measurement of fuel samples, and (
2
) in-line meters for the continuous measurement of fuel conductivities in a fuel distribution system. In using portable meters, care must be taken in allowing the relaxation of residual electrical charges before measurement and in preventing fuel contamination.
1.3
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
For specific precautionary statements, see
7.1
,
7.1.1
, and
11.2.1
.
1.5
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
The ability of a fuel to dissipate charge that has been generated during pumping and filtering operations is controlled by its electrical conductivity, which depends upon its content of ion species. If the conductivity is sufficiently high, charges dissipate fast enough to prevent their accumulation and dangerously high potentials in a receiving tank are avoided.