1.1 This test method describes the analysis of aluminum and its alloys by atomic emission spectrometry. The aluminum specimen to be analyzed may be in the form of a chill cast disk, casting, foil, sheet, plate, extrusion or some other wrought form or shape. The elements covered in the scope of this method are listed in the table below.
Note 1
The concentration ranges given in the above scope were established through cooperative testing (ILS) of selected reference materials. The range shown for each element does not demonstrate the actual usable analytical range for that element. The usable analytical range may be extended higher or lower based on individual instrument capability, spectral characteristics of the specific element wavelength being used and the availability of appropriate reference materials.
1.2 This test method is suitable primarily for the analysis of chill cast disks as defined in Practices E 716. Other forms may be analyzed, provided that: (1) they are sufficiently massive to prevent undue heating, (2) they allow machining to provide a clean, flat surface, which creates a seal between the specimen and the spark stand, and (3) reference materials of a similar metallurgical condition and chemical composition are available.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Specific safety and health statements are given in Section 10.
====== Significance And Use ======
The metallurgical properties of aluminum and its alloys are highly dependant on chemical composition. Precise and accurate analyses are essential to obtaining desired properties, meeting customer specifications and helping to reduce scrap due to off-grade material.
This test method is applicable to chill cast specimens as defined in Practice E 716
and can also be applied to other types of samples provided that suitable reference materials are available. Also, other sample forms can be melted-down and cast into a disk, using an appropriate mold, as described in Practice E 716
. However, it should be noted that some elements (for example, magnesium) readily form oxides, while some others (for example, sodium, lithium, calcium, and strontium) are volatile, and may be lost to varying degrees during the melting process.